Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanoscale ; 15(30): 12748-12770, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37477348

RESUMO

Aggregation of both amyloid beta (Aß) peptide and hyperphosphorylated tau proteins is the major pathological hallmark of Alzheimer's disease (AD). Moieties that carry anti-amyloidogenic potency against both of the aggregating entities are considered to be promising drug candidatures for the disease. In the current work, we have synthesized amphipathic dipeptide vesicle-templated selenium nanoparticles (RΔF-SeNPs) as potential entities to combat AD. We have investigated and established their anti-amyloidogenic activity against different peptide-based amyloid models, such as the reductionist model based on the dipeptide phenylalanine-phenylalanine (FF) derived from Aß; a model based on the hexapeptide Ac-PHF6 (306VQIVYK311) derived from tau protein; and the full-length Aß42 polypeptide-based model. We also evaluated the neuroprotective characteristics of RΔF-SeNPs against FF, Ac-PHF6, and Aß42 fibril-induced toxicity in neuroblastoma, SH-SY5Y cells. RΔF-SeNPs further exhibited neuroprotective effects in streptozotocin (STZ) treated neuronal (N2a) cells carrying AD-like features. In addition, studies conducted in an intra-cerebroventricular STZ-instigated rat model of dementia revealed that RΔF-SeNP-treated animals showed improved cognitive activity and reduced Aß42 aggregate burden in brain tissues as compared with the STZ-treated group. Moreover, in vivo brain distribution studies conducted in animal models additionally demonstrated the brain-homing ability of RΔF-SeNPs. All together, these studies supported the potency of RΔF-SeNPs as efficient and propitious disease-modifying therapeutic agents for combating AD.


Assuntos
Doença de Alzheimer , Nanopartículas , Neuroblastoma , Selênio , Ratos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Selênio/farmacologia , Arginina , Fenilalanina/farmacologia , Dipeptídeos , Estreptozocina/uso terapêutico , Nanopartículas/uso terapêutico , Fragmentos de Peptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA