Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 199: 111263, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33939978

RESUMO

Biomass-derived carbon quantum dots have drawn special interest owing to their admirable photostability, biocompatibility, fluorescence, high solubility, sensitivity and environmentally friendly properties. In the present work, the Carbon Quantum Dots (CQDs) was synthesized from the Plectranthus amboinicus (Mexican Mint) leaves via the microwave-assisted reflux method. The strong absorption peaks observed from UV-vis spectra at 291 and 330 nm corresponds to the π-π* and n-π* transitions, respectively, reveal the formation of CQDs. The synthesized CQDs showed bright blue fluorescence under UV irradiation with a fluorescence quantum yield of 17% and a maximum emission of 436 nm in the blue region at an excitation wavelength of 340 nm. The HRTEM analysis elucidates that the synthesized CQDs were crystalline and spherical in shape with a particle size of 2.43 ± 0.02 nm. The FT-IR spectroscopy confirms the presence of the different functional groups such as -OH, -CH, CO and C-O. The chemical composition of CQD was revealed through XPS analysis. The synthesized CQDs were used as a fluorescent probe to detect different metal ions, where high selectivity was obtained for Fe3+ ions through quenching phenomenon. The emission intensity of CQD showed a good linear relationship with R2 = 0.9111 with the concentration of Fe3+ ions in the range of 0-15 µM. The fluorescence emission of CQD was turned OFF upon the binding of Fe3+ ions and turned - ON with the addition of ascorbic acid. With this fluorescent turn ON-OFF behaviour of CQD, the NOT and IMPLICATION logic gates were constructed and studied for different input conditions. The biocompatibility of CQD was tested via MTT assay using MCF7 breast cancer cell line, which revealed that CQD synthesized from the Mexican Mint leaves possess less cytotoxicity. Further, the prepared CQD was applied effectively as fluorescent probes in a cell imaging application.


Assuntos
Mentha , Pontos Quânticos , Carbono , Micro-Ondas , Extratos Vegetais , Pontos Quânticos/toxicidade , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Nanomedicine ; 10: 1977-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25792831

RESUMO

A rapid, green phytosynthesis of silver nanoparticles (AgNPs) using the aqueous extract of Helianthus tuberosus (sunroot tuber) was reported in this study. The morphology of the AgNPs was determined by transmission electron microscopy (TEM). Scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) analysis confirmed the presence of AgNPs. Fourier transform infrared spectroscopy (FTIR) analysis revealed that biomolecules in the tuber extract were involved in the reduction and capping of AgNPs. The energy-dispersive spectroscopy (EDS) analysis of the AgNPs, using an energy range of 2-4 keV, confirmed the presence of elemental silver without any contamination. Further, the synthesized AgNPs were evaluated against phytopathogens such as Ralstonia solanacearum and Xanthomonas axonopodis. The AgNPs (1-4 mM) extensively reduced the growth rate of the phytopathogens. In addition, the cytotoxic effect of the synthesized AgNPs was analyzed using rat splenocytes. The cell viability was decreased according to the increasing concentration of AgNPs and 67% of cell death was observed at 100 µg/mL.


Assuntos
Antibacterianos , Helianthus/química , Nanopartículas Metálicas , Extratos Vegetais , Prata , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Ralstonia solanacearum/efeitos dos fármacos , Ratos , Prata/química , Prata/farmacologia , Prata/toxicidade , Baço/citologia , Xanthomonas axonopodis/efeitos dos fármacos
3.
J Genet Eng Biotechnol ; 13(1): 25-29, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30647563

RESUMO

Centella asiatica (Umbelliferae) has been used for centuries in Indian ayurvedic medicine for the treatment of a wide number of health disorders. The aim of this study was to estimate and compare the concentration of bioactive compounds between wild and in vitro propagated C. asiatica plants. A marked decrease in the total phenolic compounds, flavonoids, and ascorbic acid was observed between in vitro propagated and wild type plants collected from wet land habitat. The radical scavenging activity of the wild type plant extracts also varied with the habitats. This study clearly indicates that environmental factors play a crucial role in the plant metabolic activity and medicinal activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA