Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotheranostics ; 8(1): 12-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164501

RESUMO

Surface engineered nanoparticles (metallic and nonmetallic) have gained tremendous attention for precise imaging and therapeutics of cell/tumors at molecular and anatomic levels. These tiny agents have shown their specific physicochemical properties for early-stage disease diagnosis and cancer theranostics applications (imaging and therapeutics by a single system). For example, gold nanorods (AuNRs) demonstrate better photothermal response and radiodensity for theranostics applications. However, upon near infrared light exposure these AuNRs lose their optical property which is characteristic of phototherapy of cancer. To overcome this issue, silica coating is a safe choice for nanorods which not only stabilizes them but also provides extra space for cargo loading and makes them multifunctional in cancer theranostics applications. On the other hand, various small molecules have been coated on the surface of nanoparticles (organic, inorganic, and biological) which improve their biocompatibility, blood circulation time, specific biodistribution and tumor binding ability. A few of them have been reached in clinical trials, but, struggling with FDA approval due to engineering and biological barriers. Moreover, nanoparticles also face various challenges of reliability, reproducibility, degradation, tumor entry and exit in translational research. On the other hand, cargo carrier nanoparticles have been facing critical issues of premature leakage of loaded cargo either anticancer drug or imaging probes. Hence, various gate keepers (quantum dots to supramolecules) known nanovalves have been engineered on the pore opening of the cargo systems. Here, a review on the evolution of nanoparticles and their choice for diagnostics and therapeutics applications has been discussed. In this context, basic requirements of multifunctional theranostics design for targeted imaging and therapy have been highlighted and with several challenges. Major hurdles experienced in the surface engineering routes (coating to nanovalves approach) and limitations of the designed theranostics such as poor biocompatibility, low photostability, non-specific targeting, low cargo capacity, poor biodegradation and lower theranostics efficiency are discussed in-depth. The current scenario of theranostics systems and their multifunctional applications have been presented in this article.


Assuntos
Nanopartículas , Neoplasias , Humanos , Medicina de Precisão , Reprodutibilidade dos Testes , Distribuição Tecidual , Nanopartículas/uso terapêutico , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
2.
ACS Appl Mater Interfaces ; 15(40): 47615-47627, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782885

RESUMO

Porous silica coated gold nanorod core-shell structures demonstrate a multifunctional role in bioimaging, drug delivery, and cancer therapeutics applications. Here, we address a new approach for effective distribution of gold nanorods (GNRs) in a mesoporous silica (MS) shell, viz., one nanorod in one silica particle (GMS). We have studied that silica coating presents major advantages for the better biocompatibility and stability of GNRs. In this study, two different thicknesses of silica shell over GNRs have been discussed as per the application's need; GNRs in thin silica (11 nm) are fit for phototherapy and bioimaging, whereas thick and porous silica (51 nm) coated gold nanorods are suitable for triggered drug delivery and theranostics. However, effective distribution of GNRs in ordered architecture of thick mesoporous silica (MS, more than 50 nm thickness) with high surface area (more than 1000 m2/g) is not well understood so far. Here, we present methodical investigations for uniform and highly ordered mesoporous silica coating over GNRs with tunable thickness (6 to 51 nm). Judicious identification and optimization of different reaction parameters like concentrations of silica precursor (TEOS, 1.85-43.9 mM), template (CTAB, 0.9-5.7 mM), effect of temperature, pH (8.6-10.8), stirring speed (100-400 rpm), and, most importantly, the mode of addition of TEOS with GNRs have been discussed. Studies with thick, porous silica coated GNRs simplify the highest ever reported surface area (1100 m2/g) and cargo capacity (57%) with better product yield (g/batch). First and foremost, we report a highly scalable (more than 500 mL) and rapid direct deposition of an ordered MS shell around GNRs. These engineered core-shell nanoparticles demonstrate X-ray contrast property, synergistic photothermal-chemotherapeutics, and imaging of tumor cell (96% cell death) due to released fluorescent anticancer drug molecules and photothermal effect (52 °C) of embedded GNRs. A deeper insight into their influence on the architectural features and superior theranostics performances has been illustrated in detail. Hence, these findings indicate the potential impact of individual GMS for image guided combination therapeutics of cancer.


Assuntos
Nanotubos , Neoplasias , Humanos , Medicina de Precisão , Ouro/química , Dióxido de Silício/química , Nanotubos/química
3.
Bioconjug Chem ; 29(5): 1510-1518, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29281790

RESUMO

In this work, facile synthesis and application of targeted, dual therapeutic gold nanorods-liposome (GNR-Lipos) nanohybrid for imaging guided photothermal therapy and chemotherapy is investigated. The dual therapeutic GNR-Lipos nanohybrid consists of GNR supported, and doxorubicin (DOX) loaded liposome. GNRs not only serve as a photothermal agent and increase the drug release in intracellular environment of cancer cells, but also provide mechanical strength to liposomes by being decorated both inside and outside of bilayer surfaces. The designed nanohybrid shows a remarkable response for synergistic chemophotothermal therapy compared to only chemotherapy or photothermal therapy. The NIR response, efficient uptake by the cells, disintegration of GNR-Lipos nanohybrid, and synergistic therapeutic effect of photothermal and chemotherapy over breast cancer cells MDA-MB-231 are studied for the better development of a biocompatible nanomaterial based multifunctional cancer theranostic agent.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Doxorrubicina/análogos & derivados , Ouro/farmacologia , Nanotubos/química , Nanomedicina Teranóstica/métodos , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Feminino , Ouro/química , Humanos , Hipertermia Induzida/métodos , Raios Infravermelhos , Nanotubos/ultraestrutura , Imagem Óptica/métodos , Fototerapia/métodos , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
4.
Appl Biochem Biotechnol ; 177(6): 1386-93, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319569

RESUMO

The cell-free extract, a crude enzyme (cytosolic and membrane fraction) obtained from an environmental isolate, Bacillus pumilus sp. BAB-3706 worked as excellent in reducing as well as stabilizing agent and facilitated the formation of stable colloidal selenium nanoparticles (SeNPs). Resulting nanoparticles were characterized using UV-vis spectrophotometer, TEM, EDAX, FT-IR and XRD, respectively. A working electrode was modified by coating the surface of indium tin oxide (ITO) with colloidal SeNPs. Successive additions of H2O2 (100 to 600 µM) in conventional three electrodes system, cyclic voltammeter with potential scan rate 25.0 mV/s, in 0.1 M phosphate buffer solution (PBS) yielded increase in current. A perpetual amperometric response at fixed potential (-1.0 V) and at selected time interval of 100 s showed different magnitude of current at every addition of H2O2. The linear range of detection of H2O2 was from 5 to 600 mM (R(2) = 0.9965), while the calculated limit of detection was found to be 3.00 µM. The current study suggested that microbial SeNPs can be used for fabrication of low cost, sensitive H2O2 biosensor.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Selênio/química , Bacillus/química
5.
Biol Trace Elem Res ; 157(3): 275-83, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24469678

RESUMO

A bioreductive capacity of a plant, Terminalia arjuna leaf extract, was utilized for preparation of selenium nanoparticles. The leaf extract worked as good capping as well as stabilizing agent and facilitated the formation of stable colloidal nanoparticles. Resulting nanoparticles were characterized using UV-Vis spectrophotometer, transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction analysis (XRD), respectively. The colloidal solution showed the absorption maximum at 390 nm while TEM and selected area electron diffraction (SAED) indicated the formation of polydispersed, crystalline selenium nanoparticles of size raging from 10 to 80 nm. FT-IR analysis suggested the involvement of O-H, N-H, C=O, and C-O functional group of the leaf extract in particle formation while EDAX analysis indicated the presence of selenium in synthesized nanoparticles. The effect of nanoparticles on human lymphocytes treated with arsenite, As(III), has been studied. Studies on cell viability using MTT assay and DNA damage using comet assay revealed that synthesized selenium nanoparticles showed protective effect against As(III)-induced cell death and DNA damage. Chronic ingestion of arsenic infested groundwater, and prevalence of arsenicosis is a serious public health issue. The synthesized benign nanoselenium can be a promising agent to check the chronic toxicity caused due to arsenic exposure.


Assuntos
Arsenitos/toxicidade , Linfócitos/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/metabolismo , Selênio/farmacologia , Arsenitos/antagonistas & inibidores , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Humanos , Selênio/química , Relação Estrutura-Atividade , Fatores de Tempo
6.
Colloids Surf B Biointerfaces ; 103: 261-6, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201746

RESUMO

This paper reports, an environmentally benign procedure of synthesis and characterizations of selenium nanoparticles and their protective effect against UV-induced DNA damage activities. An aqueous leaf extract of lemon plant was used as a precursor for synthesis of colloidal selenium nanoparticles. Resulting nanoparticles were characterized using UV-vis spectrophotometer, photoluminescence, TEM, EDAX, FT-IR and XRD, respectively. Selenium colloidal solution exhibited an absorption maximum at 395 nm and produced an emission maximum at 525 nm. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, crystalline, selenium nanoparticles of diameter ranging from (∼60 to 80 nm). X-ray diffraction studies showed the formation of 111, 200 and 220 planes of face-centered cubic (fcc) selenium. EDAX analysis confirmed the presence of selenium in nanosphere. Fourier transformed infrared spectroscopic investigation reveled the involvement of carboxyl (−C=O), hydroxyl (−OH), amine (−NH) functional group of lemon plant extract in preparation of selenium nanoparticles. MTT assay as well single cell gel electrophoresis assay or comet assay revealed that synthesized selenium nanoparticles, caused less cell death of lymphocytes and prevented DNA damage, when cells were exposed to UVB. The fluorescent property of selenium nanoparticles can be used as diagnostic agent. Further, their anti DNA damaging property can be investigated as a chemotherapeutic agent in cancer therapy.


Assuntos
Dano ao DNA , Química Verde/métodos , Nanopartículas Metálicas/química , Selênio/química , Raios Ultravioleta , Sobrevivência Celular , Citrus/química , Ensaio Cometa , Humanos , Medições Luminescentes , Nanopartículas Metálicas/ultraestrutura , Microscopia de Fluorescência , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA