Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2795, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531611

RESUMO

Owing to the diverse growing habitats, ecophysiology might have a regulatory impact on characteristic chemical components of tea plant. This study aimed to explore natural variations in the ecophysiological traits within seasons and the corresponding multifaceted biochemical responses given by the gene pool of 22 tea cultivars. Leaf temperature and intercellular carbon concentration (Ci), which varies as a function of transpiration and net photosynthesis respectively, have significant impact on the biochemical traits of the leaf. Occurrence of H2O2, in leaves, was associated to Ci that in turn influenced the lipid peroxidation. With the increment of Ci, total phenolics, epicatechin gallate (ECG), reducing power, and radical scavenging activity is lowered but total catechin and non-gallylated catechin derivatives (e.g. epicatechin or EC, epigallocatechin or EGC) are elevated. Leaf temperature is concomitantly associated (p ≤ 0.01) with phenolics, flavonoids, proanthocyanidin, tannin content, reducing power, iron chelation and free radical scavenging activities. Increased phenolic concentration in leaf cells, conceivably inhibit photosynthesis and moreover, gallic acid, thereafter conjugated to catechin derivatives. This study shed light on the fundamental information regarding ecophysiological impact on the quality determining biochemical characteristics of tea, which on further validation, might ascertain the genotype selection paradigm toward climate smart cultivation.


Assuntos
Antioxidantes/metabolismo , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Estações do Ano , Metabolismo Secundário/genética , Aclimatação/genética , Antioxidantes/análise , Camellia sinensis/genética , Fotossíntese/genética , Folhas de Planta/metabolismo , Temperatura
2.
Genomics ; 113(1 Pt 1): 66-78, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276009

RESUMO

Genotyping by sequencing and identification of functionally relevant nucleotide variations in crop accessions are the key steps to unravel genetic control of desirable traits. Elite cultivars of Darjeeling tea were undergone SNP genotyping by double-digest restriction-site associated DNA sequencing method. This study reports a set of 54,206 high-quality SNP markers discovered from ~10.4 GB sequence data, encompassing 15 chromosomes of the reference tea genome. Genetic relatedness among the accessions conforms to the analyses of Bayesian clustering, UPGMA, and PCoA methods. Genomic positions of the discovered SNPs and their putative effect on annotated genes designated a thoughtful understanding of their functional aspects in tea system biology. A group of 95 genes was identified to be affected by high impact variants. Genome-wide association analyses of 21 agronomic and biochemical phenotypes resulted in trait-linked polymorphic loci with strong confidence (p < 0.05 and 0.001).


Assuntos
Camellia sinensis/genética , Polimorfismo de Nucleotídeo Único , Camellia sinensis/metabolismo , Genes de Plantas , Haplótipos , Heterozigoto , Característica Quantitativa Herdável
3.
BMC Res Notes ; 10(1): 261, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683768

RESUMO

Tea (Camellia sinensis, (L.) Kuntze) is considered as most popular drink across the world and it is widely consumed beverage for its several health-benefit characteristics. These positive traits primarily rely on its regulatory networks of different metabolic pathways. Development of microsatellite markers from the conserved genomic regions are being worthwhile for reviewing the genetic diversity of closely related species or self-pollinated species. Although several SSR markers have been reported, in tea, the trait-specific Simple Sequence Repeat (SSR) markers, leading to be useful in marker assisted breeding technique, are yet to be identified. Micro RNAs are short, non-coding RNA molecules, involved in post transcriptional mode of gene regulation and thus effects on related phenotype. Present study deals with identification of the microsatellite motifs within the reported and predicted miRNA precursors that are effectively followed by designing of primers from SSR flanking regions in order to PCR validation. In addition to the earlier reports, two new miRNAs are predicting here from tea expressed tag sequence database. Furthermore, 18 SSR motifs are found to be in 13 of all 33 predicted miRNAs. Trinucleotide motifs are most abundant among all followed by dinucleotides. Since, miRNA based SSR markers are evidenced to have significant role on genetic fingerprinting study, these outcomes would pave the way in developing novel markers for tagging tea specific agronomic traits as well as substantiating non-conventional breeding program.


Assuntos
Camellia sinensis/genética , DNA de Plantas , Etiquetas de Sequências Expressas , MicroRNAs , Repetições de Microssatélites , RNA de Plantas , Chá , Agricultura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA