Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 264: 119748, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370957

RESUMO

Although conscious perception is a fundamental cognitive function, its neural correlates remain unclear. It remains debatable whether thalamocortical interactions play a decisive role in conscious perception. To clarify this, we used functional magnetic resonance imaging (fMRI) where flickering red and green visual cues could be perceived either as a non-fused colour or fused colour. Here we show significantly differentiated fMRI neurodynamics only in higher-order thalamocortical regions, compared with first-order thalamocortical regions. Anticorrelated neurodynamic behaviours were observed between the visual stream network and default-mode network. Its dynamic causal modelling consistently provided compelling evidence for the involvement of higher-order thalamocortical iterative integration during conscious perception of fused colour, while inhibitory control was revealed during the non-fusion condition. Taken together with our recent magnetoencephalography study, our fMRI findings corroborate a thalamocortical inhibitory model for consciousness, where both thalamic inhibitory regulation and integrative signal iterations across higher-order thalamocortical regions are essential for conscious perception.


Assuntos
Estado de Consciência , Tálamo , Humanos , Estado de Consciência/fisiologia , Tálamo/fisiologia , Imageamento por Ressonância Magnética , Percepção
2.
Behav Brain Res ; 234(1): 26-32, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22698706

RESUMO

Evidence from previous studies has suggested that motor imagery and motor action engage overlapping brain systems. As a result of this observation that motor imagery can activate brain regions associated with actual motor movement, motor imagery is expected to enhance motor skill performance and become an underlying principle for physical training in sports and physical rehabilitation. However, few studies have examined the effects of physical training on motor imagery in beginners. Also, differences in neural networks related to motor imagery before and after training have seldom been studied. In the current study, using functional magnetic resonance imaging (fMRI), we investigated the question of whether motor imagery can reflect plastic changes of neural correlates associated with intensive training. In fact, motor imagery was used in this study as a tool to assess the brain areas involved in shooting and involved in learning of shooting. We discovered that use of motor imagery resulted in recruitment of widely distributed common cortical areas, which were suggested to play a role in generation and maintenance of mental images before and after 90 h of shooting training. In addition to these common areas, brain activation before and after 90 h of shooting practice showed regionally distinct patterns of activity change in subcortical motor areas. That is, basal ganglia showed increased activity after 90 h of shooting practice, suggesting the occurrence of plastic change in association with gains in performance and reinforcement learning. Therefore, our results suggest that, in order to reach a level of expertise, the brain would change through initial reinforcement of preexistent connections during the training period and then use more focused neural correlates through formation of new connections.


Assuntos
Encéfalo/fisiologia , Atividade Motora/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Esportes , Adulto Jovem
3.
NMR Biomed ; 24(4): 366-72, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-22945291

RESUMO

Motor imagery is a mental rehearsal of simple or complex motor acts without overt body movement. It has been proposed that the association between performance and the mental rehearsal period that precedes the voluntary movement is an important point of difference between highly trained athletes and beginners. We compared the activation maps of elite archers and nonarchers during mental rehearsal of archery to test whether the neural correlates of elite archers were more focused and efficiently organised than those of nonarchers. Brain activation was measured using functional MRI in 18 right-handed elite archers and 18 right-handed nonarchers. During the active functional MRI imagery task, the participants were instructed to mentally rehearse their archery shooting from a first-person perspective. The active imagery condition was tested against the nonmotor imagery task as a control condition. The results showed that the premotor and supplementary motor areas, and the inferior frontal region, basal ganglia and cerebellum, were active in nonarchers, whereas elite archers showed activation primarily in the supplementary motor areas. In particular, our result of higher cerebellar activity in nonarchers indicates the increased participation of the cerebellum in nonarchers when learning an unfamiliar archery task. Therefore, the difference in cerebellar activation between archers and nonarchers provides evidence of the expertise effect in the mental rehearsal of archery. In conclusion, the relative economy in the cortical processes of elite archers could contribute to greater consistency in performing the specific challenge in which they are highly practised.


Assuntos
Mapeamento Encefálico , Imagens, Psicoterapia , Atividade Motora/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Esportes , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
4.
Occup Environ Med ; 67(12): 809-15, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20833761

RESUMO

BACKGROUND: In a previous study, regional delivery of manganese (Mn)ions within the brain revealed that the metal accumulates in the basal ganglia, where it induces degeneration of the globus pallidus. Degeneration of the basal ganglia impairs motor ability by compromising an important neural circuit involved in the regulation of motor control. Therefore, much research has been devoted to identifying a sensitive and non-invasive imaging marker to evaluate the functional correlates of Mn-related brain dysfunction. METHODS: We performed the first-ever sequential finger-tapping functional MRI (fMRI) experiment to investigate the behavioural significance of additionally recruited brain regions in welders with chronic Mn exposure. RESULTS: During the finger tapping task, activation of the bilateral primary sensorimotor cortex (SM1), bilateral supplementary motor area (SMA), bilateral dorsolateral premotor cortex, bilateral superior parietal cortex and ipsilateral dentate nucleus was higher in the welding group (42 welders) than in the control group (26 controls). The pallidal index correlated with the activation observed in the contralateral SM1 for the finger tapping task of the left hand. The fMRI variables correlated with motor behaviour. Grooved Pegboard performances (right hand) correlated with activation, as seen in the ipsilateral and contralateral SMAs obtained during the finger tapping task of the right hand. CONCLUSION: Our findings suggest that increased brain activation results from the compensational activation of ancillary cortical pathways, which ensures adequate motor function.


Assuntos
Manganês/toxicidade , Plasticidade Neuronal/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Desempenho Psicomotor/efeitos dos fármacos , Soldagem , Adulto , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/fisiopatologia , Plasticidade Neuronal/fisiologia , Doenças Profissionais/induzido quimicamente , Doenças Profissionais/fisiopatologia , Exposição Ocupacional/análise , Desempenho Psicomotor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA