Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 171: 116153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232664

RESUMO

Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease characterized by persistent inflammation and joint destruction. A lipid mediator (LM, namely, 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX in a ratio of 3:47:50) produced by soybean lipoxygenase from DHA, exhibits anti-inflammatory activity. In this study, we determined the effect of LM on collagen antibody-induced arthritis (CAIA) in mice and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in RAW264.7 cells. LM effectively downregulated the expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K, inhibited osteoclast formation, and suppressed the NF-κB signaling pathway in vitro. In vivo, LM at 10 µg/kg/day significantly decreased paw swelling and inhibited progression of arthritis in CAIA mice. Moreover, proinflammatory cytokine (tumor necrosis factor-α, interleukin (IL)-6, IL-1ß, IL-17, and interferon-γ) levels in serum were decreased, whereas IL-10 levels were increased following LM treatment. Furthermore, LM alleviated joint inflammation, cartilage erosion, and bone destruction in the ankles, which may be related to matrix metalloproteinase and Janus kinase (JAK)-signal transducer and activators of transcription (STAT) signaling pathway. Our findings suggest that LM attenuates arthritis severity, restores serum imbalances, and modifies joint damage. Thus, LM represents a promising therapy for relieving RA symptoms.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Osteoclastos , Ligante RANK/metabolismo , Glycine max , Ácidos Docosa-Hexaenoicos/farmacologia , Artrite Reumatoide/metabolismo , Artrite Experimental/patologia , Inflamação/metabolismo , Lipoxigenases/metabolismo , Lipoxigenases/farmacologia
2.
Mar Drugs ; 21(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36827121

RESUMO

Although the tumor bulk is initially reduced by 5-fluorouracil (5-FU), chemoresistance developed due to prolonged chemotherapy in colorectal cancer (CRC). The enrichment of cancer stem cells (CSCs) and the infiltration of tumor-associated macrophages (TAMs) contribute to chemoresistance and poor outcomes. A docosahexaenoic acid derivative developed by our group, 7S,15R-dihydroxy-16S,17S-epoxy-docosapentaenoic acid (diHEP-DPA), exerts antitumor effects against TAMs infiltration and CSCs enrichment in our previous study. The current study aimed to investigate whether diHEP-DPA was able to overcome chemoresistance to 5-FU in CRCs, together with the potential synergistic mechanisms in a CT26-BALB/c mouse model. Our results suggested that although 5-FU inhibited tumor growth, 5-FU enriched CSCs via the WNT/ß-catenin signaling pathway, resulting in chemoresistance in CRCs. However, we revealed that 5-FU promoted the infiltration of TAMs via the NF-kB signaling pathway and improved epithelial-mesenchymal transition (EMT) via the signal transducer and activator of the transcription 3 (STAT3) signaling pathway; these traits were believed to contribute to CSC activation. Furthermore, supplementation with diHEP-DPA could overcome drug resistance by decreasing the CSCs, suppressing the infiltration of TAMs, and inhibiting EMT progression. Additionally, the combinatorial treatment of diHEP-DPA and 5-FU effectively enhanced phagocytosis by blocking the CD47/signal regulatory protein alpha (SIRPα) axis. These findings present that diHEP-DPA is a potential therapeutic supplement to improve drug outcomes and suppress chemoresistance associated with the current 5-FU-based therapies for colorectal cancer.


Assuntos
Neoplasias Colorretais , Fluoruracila , Camundongos , Animais , Humanos , Fluoruracila/farmacologia , Resistencia a Medicamentos Antineoplásicos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Xenoenxertos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Via de Sinalização Wnt , Células-Tronco Neoplásicas
3.
Nutrients ; 15(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36678298

RESUMO

Although fish oil (FO) and lipid mediators (LM) derived from polyunsaturated fatty acids can prevent obesity, their combined effects and cellular metabolism remain unclear. Therefore, this study aimed to examine the potential protective and metabolic effects of FO in combination with LM (a mixture of 17S-monohydroxy docosahexaenoic acid, resolvin D5, and protectin DX [3:47:50], derived from docosahexaenoic acid (DHA)) on palmitic acid (PA)-induced HepG2 cells and high-fat- diet (HFD)-induced C57BL/6J mice after 9-week treatment. Lipid metabolism disorders and inflammation induced by HFD and PA were substantially reduced after FO and LM treatment. Further, FO and LM treatments reduced lipid accumulation by increasing fatty acid oxidation via peroxisome proliferator-activated receptor α and carnitine-palmitoyl transferase 1 as well as by decreasing fatty acid synthesis via sterol regulatory element-binding protein-1c and fatty acid synthase. Finally, FO and LM treatment reduced inflammation by blocking the NF-κB signaling pathway. Importantly, the combination of FO and LM exhibited more robust efficacy against nonalcoholic fatty liver disease, suggesting that FO supplemented with LM is a beneficial dietary strategy for treating this disease.


Assuntos
Óleos de Peixe , Metabolismo dos Lipídeos , Animais , Humanos , Camundongos , Dieta Hiperlipídica , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Óleos de Peixe/farmacologia , Óleos de Peixe/metabolismo , Células Hep G2 , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
4.
Sci Rep ; 10(1): 18849, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139849

RESUMO

Omega-3 polyunsaturated fatty acids (PUFAs) have been known to have beneficial effects in the prevention of various diseases. Recently, it was identified that the bioactivities of omega-3 are related to lipid mediators, called pro-resolving lipid mediators (SPMs), converted from PUFAs, so they have attracted much attention as potential pharmaceutical targets. Here, we aimed to build an efficient production system composed of enzymatic and chemical catalysis that converts docosahexaenoic acid (DHA) into lipid mediators. The cyanobacterial lipoxygenase, named Osc-LOX, was identified and characterized, and the binding poses of enzyme and substrates were predicted by ligand docking simulation. DHA was converted into three lipid mediators, a 17S-hydroxy-DHA, a 7S,17S-dihydroxy-DHA (RvD5), and a 7S,15R-dihydroxy-16S,17S-epoxy-DPA (new type), by an enzymatic reaction and deoxygenation. Also, two lipid mediators, 7S,15R,16S,17S-tetrahydroxy-DPA (new type) and 7S,16R,17S-trihydroxy-DHA (RvD2), were generated from 7S,15R-dihydroxy-16S,17S-epoxy-DPA by a chemical reaction. Our study suggests that discovering new enzymes that have not been functionally characterized would be a powerful strategy for producing various lipid mediators. Also, this combination catalysis approach including biological and chemical reactions could be an effective production system for the manufacturing lipid mediators.


Assuntos
Ácidos Docosa-Hexaenoicos/síntese química , Mediadores da Inflamação/síntese química , Inflamação/tratamento farmacológico , Lipídeos/síntese química , Catálise , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos Ômega-3/síntese química , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Humanos , Inflamação/patologia , Mediadores da Inflamação/química , Mediadores da Inflamação/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Lipídeos/farmacologia , Lipoxigenase/química
5.
J Ind Microbiol Biotechnol ; 44(7): 1107-1113, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28315963

RESUMO

A Bacillus sp. strain named BRC1 is capable of producing 2,3-butanediol (2,3-BD) using hydrolysates of the Jerusalem artichoke tuber (JAT), a rich source of the fructose polymer inulin. To enhance 2,3-BD production, we undertook an extensive analysis of the Bacillus sp. BRC1 genome, identifying a putative gene (sacC) encoding a fructan hydrolysis enzyme and characterizing the activity of the resulting recombinant protein expressed in and purified from Escherichia coli. Introduction of the sacC gene into Bacillus sp. BRC1 using an expression vector increased enzymatic activity more than twofold. Consistent with this increased enzyme expression, 2,3-BD production from JAT was also increased from 3.98 to 8.10 g L-1. Fed-batch fermentation of the recombinant strain produced a maximal level of 2,3-BD production of 28.6 g L-1, showing a high theoretical yield of 92.3%.


Assuntos
Bacillus/genética , Butileno Glicóis/metabolismo , Glicosídeo Hidrolases/metabolismo , Helianthus/química , Extratos Vegetais/química , Tubérculos/química , Sequência de Aminoácidos , Bacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Clonagem Molecular , Escherichia coli/genética , Genes Bacterianos , Glicosídeo Hidrolases/genética , Inulina/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes
6.
J Biosci Bioeng ; 121(2): 154-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26173955

RESUMO

The cDNA encoding a putative glycoside hydrolase family 5, which has been predicted to be an endoglucanase (PcEg5A), was cloned from Phanerochaete chrysosporium and expressed in Pichia pastoris. PcEg5A contains a carbohydrate-binding domain and two important amino acids, E209 and E319, playing as proton donor and nucleophile in substrate catalytic domain. SDS-PAGE analysis indicated that the recombinant endoglucanase 5A (rPcEg5A) has a molecular size of 43 kDa which corresponds with the theoretical calculation. Optimum pH and temperature were found to be 4.5-6.0, and 50°C-60°C, respectively. Moreover, rPcEg5A exhibited maximal activity in the pH range of 3.0-8.0, whereas over 50% of activity still remained at 20°C and 80°C. rPcEg5A was stable at 60°C for 12 h incubation, indicating that rPcEg5A is a thermostable enzyme. Manganese ion enhanced the enzyme activity by 77%, indicating that rPcEg5A is a metal dependent enzyme. The addition of rPcEg5A to cellobiase (cellobiohydrolase and ß-glucosidase) resulted in a 53% increasing saccharification of NaOH-pretreated barley straw, whereas the glucose release was 47% higher than that cellobiase treatment alone. Our study suggested that rPcEg5A is an enzyme with great potential for biomass saccharification.


Assuntos
Celulase/classificação , Celulase/metabolismo , Manganês/metabolismo , Phanerochaete/enzimologia , Biomassa , Domínio Catalítico , Celulase/química , Celulase/genética , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Peso Molecular , Phanerochaete/genética , Pichia/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , beta-Glucosidase/metabolismo
7.
Appl Biochem Biotechnol ; 170(8): 1807-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754558

RESUMO

The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l(-1) [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g(-1) biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l(-1) of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l(-1) after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.


Assuntos
Álcalis/química , Araceae/química , Araceae/microbiologia , Etanol/metabolismo , Frutas/química , Frutas/microbiologia , Saccharomyces cerevisiae/fisiologia , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos , Proliferação de Células , Celulose/metabolismo , Etanol/isolamento & purificação , Fermentação , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA