Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 83: 153474, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33548867

RESUMO

BACKGROUND: Limonene, a common terpene found in citrus fruits, is assumed to reduce stress and mood disorders. Dopamine and γ-aminobutyric acid (GABA) have been reported to play an important role in modulating anxiety in different parts of the brain. HYPOTHESIS/PURPOSE: Herein, we report the anxiolytic activity of limonene. In addition, we identified a possible mechanism underlying the effect of limonene on DAergic and GABAergic neurotransmission. STUDY DESIGN: In this study, mice were injected with saline in the control group and limonene in the test group before behavioral analysis. We performed immunoblotting and high-performance liquid chromatography (HPLC) analysis after the behavioral study. RESULTS: The limonene treated group showed increased locomotor activity and open-arm preference in the elevated plus maze experiment. Limonene treatment increased the expression of both tyrosine hydroxylase and GAD-67 proteins and significantly upregulated dopamine levels in the striatum. Furthermore, tissue dopamine levels were increased in the striatum of mice following limonene treatment, and depolarization-induced GABA release was enhanced by limonene pre-treatment in PC-12 cells. Interestingly, limonene-induced anxiolytic activity and GABA release augmentation were blocked by an adenosine A2A receptor (A2AR) antagonist. CONCLUSION: Our results suggest that limonene inhibits anxiety-related behavior through A2A receptor-mediated regulation of DAergic and GABAergic neuronal activity.


Assuntos
Ansiolíticos/farmacologia , Corpo Estriado/efeitos dos fármacos , Limoneno/farmacologia , Receptor A2A de Adenosina/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Ratos , Transmissão Sináptica/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , Ácido gama-Aminobutírico/metabolismo
2.
Phytomedicine ; 36: 8-17, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29157831

RESUMO

BACKGROUND: Grapes are among the most widely consumed plants and are used as a folk medicine. Vitis species have been traditionally used as anti-inflammatory, analgesic, and memory-enhancing agents, but, their biological activities of discarded grape leaves are not completely understood. PURPOSE: We investigated the effects of alcoholic aqueous leaf extract of Vitis labruscana (LEVL) in a mouse model of memory impairment and tried to ascertain its mechanism. We also evaluated its effects in SH-SY5Y cells. METHODS: LEVL (50, 100, and 150 mg/kg) was administered to ICR mice once daily for 7 days. Memory impairment was induced with intraperitoneal scopolamine injections (1 mg/kg) and measured with the Y-maze test and a passive avoidance task. LEVL-induced signaling was evaluated in SH-SY5Y cells and mouse hippocampi. RESULTS: We first identified quercetin-3-O-glucuronide as LEVL's major component. We then showed that LEVL promoted phosphorylation of Akt, extracellular regulated kinase (ERK), and cyclic AMP response element binding protein (CREB) and proliferation of SH-SY5Y cells. Oral LEVL administration (100 mg/kg) for 7 days significantly reversed scopolamine-induced reductions of spontaneous alternation in the Y-maze test and scopolamine-induced shortening of latency times in the passive avoidance task's retention trial. Consistent with the cell experiment results, LEVL restored scopolamine-decreased phosphorylation of Akt, ERK, and CREB and scopolamine-reduced expression of brain-derived neuroprotective factor expression in mouse hippocampi. CONCLUSION: Our results suggest that LEVL promotes phosphorylation of Akt, ERK, and CREB in the hippocampus and ameliorates scopolamine-induced memory impairment in mice.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vitis/química , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos ICR , Fosforilação , Extratos Vegetais/química , Folhas de Planta/química , Escopolamina/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
3.
Molecules ; 22(2)2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28178193

RESUMO

Neuroblastomas are the most common solid extracranial tumors in childhood. We investigated the anticancer effect of cearoin isolated from Dalbergia odorifera in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with various doses of cearoin. The viability was measured by MTT assay. DCFDA fluorescence assay and Griess assay were used for the measurement of intracellular reactive oxygen species (ROS) and nitric oxide (NO), respectively. Western blot analysis was performed to clarify the molecular pathway involved. Cearoin induced cell death in a dose-dependent manner. Cearoin increased the phosporylation of ERK, the conversion of LC3B-I to LC3B-II, decrease in Bcl2 expression, the activation of caspase-3, and the cleavage of PARP, indicating the induction of autophagy and apoptosis. Furthermore, cearoin treatment increased the production of ROS and NO. Co-treatment with the antioxidant N-acetylcysteine completely abolished cearoin-mediated autophagy, ERK activation and apoptosis, suggesting the critical role of ROS in cearoin-induced anticancer effects. Moreover, co-treatment with ERK inhibitor PD98059 partially reversed cearoin-induced cell death, indicating the involvement of ERK in cearoin anticancer effects. These data reveal that cearoin induces autophagy, ERK activation and apoptosis in neuroblastoma SH-SY5Y cells, which is mediated primarily by ROS generation, suggesting its therapeutic application for the treatment of neuroblastomas.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos Fitogênicos/química , Antioxidantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dalbergia/química , Ativação Enzimática/efeitos dos fármacos , Humanos , Neuroblastoma/metabolismo , Óxido Nítrico/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química
4.
Artigo em Inglês | MEDLINE | ID: mdl-26635888

RESUMO

Myrrh has been used since ancient times for the treatment of various diseases such as inflammatory diseases, gynecological diseases, and hemiplegia. In the present study, we investigated the effects of aqueous extracts of myrrh resin (AEM) on scopolamine-induced memory impairments in mice. AEM was estimated with (2E,5E)-6-hydroxy-2,6-dimethylhepta-2,4-dienal as a representative constituent by HPLC. The oral administration of AEM for 7 days significantly reversed scopolamine-induced reduction of spontaneous alternation in the Y-maze test. In the passive avoidance task, AEM also restored the decreased latency time of the retention trial by scopolamine treatment. In addition, Western blot analysis and Immunohistochemistry revealed that AEM reversed scopolamine-decreased phosphorylation of Akt and extracellular signal-regulated kinase (ERK). Our study demonstrates for the first time that AEM ameliorates the scopolamine-induced memory impairments in mice and increases the phosphorylation of Akt and ERK in the hippocampus of mice brain. These results suggest that AEM has the therapeutic potential in memory impairments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA