Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36110191

RESUMO

Methyl gallate is a phenolic compound mainly found in medicinal plants. It has been reported to its anticancer activity in various tumors. In this study, we aimed to demonstrate the antitumor effect of methyl gallate in the melanoma mouse model and B16F10 cells. Our results showed that methyl gallate decreased cell viability and induced apoptosis by increasing the expression of cleaved caspase3 in B16F10 cells and prevented cell migration and tube formation in human umbilical vein endothelial cells. In B16F10 cell-inoculated mice, methyl gallate not only decreased tumor volume by 30% but also significantly reduced tumor vessel density and pericyte coverage. Moreover, methyl gallate diminished by close to 50% the expression of cytokeratin and LYVE-1 in mouse right inguinal lymph nodes, indicating that methyl gallate could suppress metastasis. In conclusion, this study suggests that methyl gallate inhibits tumor development by inducing apoptosis and blocking tumor angiogenesis and metastasis and might be considered a therapeutic agent for melanoma.

2.
Biomed Pharmacother ; 117: 109091, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228803

RESUMO

Diosmetin is a natural flavonoid obtained from citrus fruits and some medicinal herbs. Previous studies have reported the anti-cancer activity of diosmetin in some types of tumors. However, it is still unclear whether diosmetin exerts anti-cancer effects, particularly anti-angiogenic effects, in skin cancer. In this study, we used B16F10 melanoma cells and human umbilical vein endothelial cells to investigate the inhibitory effect of diosmetin on cell proliferation, migration and tube formation in vitro. Rat aorta ring assays were performed to determine the effect of diosmetin on ECs sprouting ex vivo. Furthermore, a B16F10 mouse melanoma model was used to observe the effect of diosmetin on tumor growth, angiogenesis, and metastasis in vivo. Our results showed that diosmetin not only suppressed tumor cell proliferation and migration but also induced cell apoptosis via the caspase pathway in B16F10 cells, and potently inhibited tube formation and cell migration in HUVECs. Rat aorta ring assays showed that diosmetin attenuated the ECs sprouting. Moreover, the mouse melanoma model showed that diosmetin significantly delayed tumor growth by inhibiting tumor vessels sprouting and expansion during tumor progression. Notably, diosmetin induced the normalization of tumor vasculature through the downregulation of angiopoietin-2 and the improvement of pericyte coverage, leading to suppression of metastasis formation in lungs and lymph nodes. In conclusion, our results demonstrate that diosmetin suppresses tumor progression and metastasis by inducing tumor cell death and inhibiting tumor angiogenesis as well as normalizing the defective tumor vasculature, suggesting that diosmetin is a potential adjuvant chemotherapy agent.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Flavonoides/farmacologia , Neovascularização Patológica/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Metástase Linfática/tratamento farmacológico , Metástase Linfática/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Ratos , Ratos Sprague-Dawley , Neoplasias Cutâneas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
3.
Biomed Pharmacother ; 106: 326-332, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29966977

RESUMO

Alchemilla vulgaris and Mimosa tenuiflora (Mimosa) have been used to treat cutaneous wounds as a traditional remedy due to their various biological activities. But, there are only a few studies about the effects of these herbs on wound healing. The purpose of this study is to investigate the wound healing effect of the herbal mixture, consisting of A. vulgaris and Mimosa, in mice and to determine the activity of the extract in vitro. In present study, application of an ointment containing the herbal mixture on the dorsal skin wounds of mice showed that the wound healing process was faster than treatment of Fusidic acid. Histological analysis demonstrated the herbal mixture promoted re-epithelialization, collagen synthesis, and especially the regeneration of skin appendages such as hair follicles. Immunohistochemical analysis revealed the herbal mixture improved angiogenesis and the stabilization of blood vessels, as well as accelerated the formation of granulation tissue. In addition, we demonstrated that herbal mixture enhanced the migration of HaCaT, fibroblasts, and HUVECs on a two-dimensional wound, and promoted the proliferation of macrophages and lymphatic vessels. Our results demonstrated that herbal mixture can promote the migration of keratinocytes, fibroblasts, and endothelial cells, and the proliferation of macrophages and lymphatic vessels. Furthermore, it showed that herbal mixture accelerates wound healing. Therefore, we suggest that herbal mixture may have a potential for therapeutic use for treatment and management of cutaneous wound.


Assuntos
Alchemilla , Fármacos Dermatológicos/farmacologia , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/tratamento farmacológico , Células 3T3-L1 , Administração Cutânea , Alchemilla/química , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/isolamento & purificação , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mimosa/química , Neovascularização Fisiológica/efeitos dos fármacos , Pomadas , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Reepitelização/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Pele/patologia , Fatores de Tempo , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
4.
Cell Mol Neurobiol ; 38(2): 497-505, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28477054

RESUMO

Sigesbeckia pubescens (SP) is a traditional Chinese medicine, possessing antioxidant and anti-inflammatory activities. In this study, we evaluate the neuroprotective activities of SP extract on glutamate-induced oxidative stress in HT22 cells and the molecular mechanism underlying neuroprotection. We applied 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), crystal violet, reactive oxygen species (ROS), lactate dehydrogenase (LDH), quantitative real-time polymerase chain reaction (qPCR), and western blot analyses for assessing the neuroprotective effects of SP extract. The experimental study revealed that SP considerably increased the cell viability, and reduced the oxidative stress promoted ROS and LDH generation in HT22 cells in a dose-dependent manner. Additionally, the morphology of HT22 cells was effectively improved by SP. Upregulated gene expressions of mitogen-activated protein kinase (MAPK) were markedly attenuated by SP. Similarly, SP notably suppressed the ROS-mediated phosphorylation of MAPK (pERK1/2, pJNK, and pp38) cascades and activation of apoptotic factor caspase-3 signaling pathway that overall contributed to the neuroprotection. Taken together, SP may exert neuroprotective effects via alteration of MAPK and caspase-3 pathways under oxidative stress condition. Therefore, SP is a potential agent for preventing oxidative stress-mediated neuronal cell death.


Assuntos
Caspase 3/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Ácido Glutâmico/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/fisiologia
5.
Oncol Rep ; 38(5): 3011-3018, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29048641

RESUMO

Baicalein, a herbal medicine, is a natural flavonoid isolated from the roots of Scutellaria baicalensis Georgi. It is known for its anticancer, anti-inflammatory and neuroprotective properties. Despite these well-known properties, it is not yet clear what effect baicalein has on tumor progression. Therefore, in the present study, we used B16F10 cells, Lewis lung carcinoma (LLC) cells, and human umbilical vein endothelial cells (HUVECs) to investigate the effect of baicalein on cell proliferation and viability, migration and tube formation in vitro. In addition, an experimental animal model was used to observe the growth rate and metastasis of tumors and tumor vessel formation in vivo. Our results showed that baicalein decreased the proliferation and migration and induced tumor cell death via caspase-3 activation in the B16F10 and LLC cells, and strongly inhibited tube formation and cell migration in HUVECs. Furthermore, mouse models showed that baicalein reduced the tumor volume and greatly reduced the tumor growth rate in the early stages of tumor progression, and the baicalein-treated groups had significantly reduced expression of CD31 (endothelial cell marker) and α-SMA (mural cell marker) in the tumors, indicating that baicalein inhibits tumor angiogenesis by disrupting tumor vasculature development. Comparison of the lymph node and lung samples collected from the baicalein-treated group, and the untreated group showed that baicalein reduced metastasis of the tumor to these tissues. In summary, baicalein reduced tumor progression and metastasis, directly induced tumor cell death, and inhibited tumor angiogenesis. Our results strongly demonstrate that baicalein is a potential chemotherapeutic agent.


Assuntos
Proliferação de Células/efeitos dos fármacos , Flavanonas/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis , Movimento Celular/efeitos dos fármacos , Flavanonas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Extratos Vegetais/química , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Scutellaria baicalensis
6.
Phytother Res ; 27(8): 1185-92, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23008012

RESUMO

Prion diseases are a family member of neurodegenerative disorders caused by the accumulation of misfolded-prion proteins (scrapie form of PrP, PrP(Sc)). The accumulation of PrP(Sc) in the brain leads to neurotoxicity by the induction of mitochondrial-apoptotic pathways. Recent studies implicated gingerol in protection against neurodegeneration. However, the basis of the neuroprotection in prion disease remains unclear. Thus, we investigated the influence of gingerol on prion peptide-induced neuronal damage. Gingerol blocked PrP(106-126)-mediated neurotoxicity by protecting mitochondrial function. Moreover, the protective effect of gingerol against PrP(106-126)-induced mitochondrial damage was associated with hypoxia-inducible factor 1 alpha (HIF-1α) expression. Gingerol-induced HIF-1α expression inhibited the PrP(106-126)-induced mitochondrial dysfunction. On the other hand, inhibition of gingerol-induced HIF-1 α expression attenuated the gingerol-mediated neuroprotective effect. Here, we demonstrate for the first time that treatment with gingerol prevents prion peptide-mediated neuronal cell death and that the neuroprotection is induced by HIF-1α-mediated signals. This study suggests that treatment with gingerol may provide a novel therapeutic strategy for prion-mediated neurotoxicity.


Assuntos
Catecóis/farmacologia , Álcoois Graxos/farmacologia , Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/efeitos adversos , Príons/efeitos adversos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial
7.
Int J Mol Med ; 30(6): 1451-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22992945

RESUMO

Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through a family of G-protein-coupled receptors (GPCRs) to control diverse biological processes including inflammation and wound-healing. In this study, a novel biological activity of S1P in articular chondrocytes was identified. Human primary chondrocytes were cultured in a monolayer. Reverse transcription-polymerase chain reaction (RT-PCR) and western blotting were performed to detect genes and proteins involved in inflammation and cartilage degradation when human primary chondrocytes were stimulated by interleukin (IL)-1ß. Matrix metalloproteinase (MMP)-2 and MMP-9 activity was evaluated by gelatin zymography. Glycosaminoglycan (GAG) degradation was evaluated using the dimethylene blue method. Prostaglandin E2 (PGE2) was measured by enzyme-linked immunosorbent assay (ELISA). By using the S1P1 receptor agonist and antagonist, we discovered the key role played by S1P1 in the S1P-dependent inhibition of IL-1ß-induced inflammation in human chondrocytes. S1P dose-dependently inhibited IL-1ß-induced NF-κB p65, cyclooxygenase (COX)-2, MMP-1, MMP-3, MMP-13 and MMP-14 mRNA expression in human chondrocytes and IL-1ß-induced PGE2 synthesis and GAG degradation in human cartilage explants. W146, a known S1P1 receptor antagonist, inhibited the active form of NF-κB p65 and COX-2 expression induced by IL-1ß. The anti-inflammatory action of the S1P1 receptor agonist SEW2871 was similar to that of S1P. This study demonstrates that S1P has anti-inflammatory effects on chondrocytes via the S1P1 receptor. Our data suggest that targeting S1P and S1P1 may be a potential therapy for arthritis.


Assuntos
Anti-Inflamatórios/farmacologia , Cartilagem Articular/patologia , Condrócitos/metabolismo , Interleucina-1beta/fisiologia , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Avaliação Pré-Clínica de Medicamentos , Indução Enzimática/efeitos dos fármacos , Matriz Extracelular , Humanos , Articulação do Joelho/patologia , Metaloproteinases da Matriz Secretadas/genética , Metaloproteinases da Matriz Secretadas/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Proteólise , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/farmacologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA