Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioorg Med Chem Lett ; 28(1): 31-34, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174347

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme crucial for bone matrix mineralization via its ability to hydrolyze extracellular inorganic pyrophosphate (ePPi), a potent mineralization inhibitor, to phosphate (Pi). By the controlled hydrolysis of ePPi, TNAP maintains the correct ratio of Pi to ePPi and therefore enables normal skeletal and dental calcification. In other areas of the body low ePPi levels lead to the development of pathological soft-tissue calcification, which can progress to a number of disorders. TNAP inhibitors have been shown to prevent these processes via an increase of ePPi. Herein we describe the use of a whole blood assay to optimize a previously described series of TNAP inhibitors resulting in 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide (SBI-425), a potent, selective and oral bioavailable compound that robustly inhibits TNAP in vivo.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Inibidores Enzimáticos/química , Niacinamida/análogos & derivados , Niacinamida/química , Sulfonamidas/química , Administração Oral , Fosfatase Alcalina/metabolismo , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Meia-Vida , Concentração Inibidora 50 , Camundongos , Niacinamida/metabolismo , Niacinamida/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/metabolismo , Sulfonamidas/farmacocinética
2.
Hepatology ; 66(4): 1197-1218, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28543567

RESUMO

Hepatic cystogenesis in polycystic liver disease is associated with increased levels of cyclic adenosine monophosphate (cAMP) in cholangiocytes lining liver cysts. Takeda G protein receptor 5 (TGR5), a G protein-coupled bile acid receptor, is linked to cAMP and expressed in cholangiocytes. Therefore, we hypothesized that TGR5 might contribute to disease progression. We examined expression of TGR5 and Gα proteins in cultured cholangiocytes and in livers of animal models and humans with polycystic liver disease. In vitro, we assessed cholangiocyte proliferation, cAMP levels, and cyst growth in response to (1) TGR5 agonists (taurolithocholic acid, oleanolic acid [OA], and two synthetic compounds), (2) a novel TGR5 antagonist (m-tolyl 5-chloro-2-[ethylsulfonyl] pyrimidine-4-carboxylate [SBI-115]), and (3) a combination of SBI-115 and pasireotide, a somatostatin receptor analogue. In vivo, we examined hepatic cystogenesis in OA-treated polycystic kidney rats and after genetic elimination of TGR5 in double mutant TGR5-/- ;Pkhd1del2/del2 mice. Compared to control, expression of TGR5 and Gαs (but not Gαi and Gαq ) proteins was increased 2-fold to 3-fold in cystic cholangiocytes in vitro and in vivo. In vitro, TGR5 stimulation enhanced cAMP production, cell proliferation, and cyst growth by ∼40%; these effects were abolished after TGR5 reduction by short hairpin RNA. OA increased cystogenesis in polycystic kidney rats by 35%; in contrast, hepatic cystic areas were decreased by 45% in TGR5-deficient TGR5-/- ;Pkhd1del2/del2 mice. TGR5 expression and its colocalization with Gαs were increased ∼2-fold upon OA treatment. Levels of cAMP, cell proliferation, and cyst growth in vitro were decreased by ∼30% in cystic cholangiocytes after treatment with SBI-115 alone and by ∼50% when SBI-115 was combined with pasireotide. CONCLUSION: TGR5 contributes to hepatic cystogenesis by increasing cAMP and enhancing cholangiocyte proliferation; our data suggest that a TGR5 antagonist alone or concurrently with somatostatin receptor agonists represents a potential therapeutic approach in polycystic liver disease. (Hepatology 2017;66:1197-1218).


Assuntos
AMP Cíclico/metabolismo , Cistos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Hepatopatias/metabolismo , Pirimidinas/uso terapêutico , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proliferação de Células/efeitos dos fármacos , Cistos/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Humanos , Hepatopatias/tratamento farmacológico , Camundongos , Ácido Oleanólico , Doenças Renais Policísticas/metabolismo , Cultura Primária de Células , Pirimidinas/farmacologia , Ratos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Somatostatina/análogos & derivados , Somatostatina/farmacologia , Somatostatina/uso terapêutico
3.
Methods Mol Biol ; 1439: 131-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27316992

RESUMO

Fluorescence-based detection techniques are popular in high throughput screening due to sensitivity and cost-effectiveness. Four commonly used techniques exist, each with distinct characteristics. Fluorescence intensity assays are the simplest to run, but suffer the most from signal interference. Fluorescence polarization assays show less interference from the compounds or the instrument, but require a design that results in change of fluorophore-containing moiety size and usually have narrow assay signal window. Fluorescence resonance energy transfer (FRET) is commonly used for detecting protein-protein interactions and is constrained not by the sizes of binding partners, but rather by the distance between fluorophores. Time-resolved fluorescence resonance energy transfer (TR-FRET), an advanced modification of FRET approach utilizes special fluorophores with long-lived fluorescence and earns its place near the top of fluorescent techniques list by its performance and robustness, characterized by larger assay window and minimized compound spectral interference. TR-FRET technology can be applied in biochemical or cell-based in vitro assays with ease. It is commonly used to detect modulation of protein-protein interactions and in detection of products of biochemical reactions and cellular activities.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios Enzimáticos/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Mapas de Interação de Proteínas , Animais , Proteínas Culina/metabolismo , Humanos , Proteína NEDD8/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteína SUMO-1/metabolismo
4.
J Biomol Screen ; 17(6): 738-51, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496096

RESUMO

Plasmodium falciparum causes severe malaria infections in millions of people every year. The parasite is developing resistance to the most common antimalarial drugs, which creates an urgent need for new therapeutics. A promising and attractive target for antimalarial drug design is the bifunctional enzyme glucose-6-phosphate dehydrogenase-6-phosphogluconolactonase (PfGluPho) of P. falciparum, which catalyzes the key step in the parasites' pentose phosphate pathway. In this study, we describe the development of a high-throughput screening assay to identify small-molecule inhibitors of recombinant PfGluPho. The optimized assay was used to screen three small-molecule compound libraries-namely, LOPAC (Sigma-Aldrich, 1280 compounds), Spectrum (MicroSource Discovery Systems, 1969 compounds), and DIVERSet (ChemBridge, 49 971 compounds). These pilot screens identified 899 compounds that inhibited PfGluPho activity by at least 50%. Selected compounds were further studied to determine IC(50) values in an orthogonal assay, the type of inhibition and reversibility, and effects on P. falciparum growth. Screening results and follow-up studies for selected PfGluPho inhibitors are presented. Our high-throughput screening assay may provide the basis to identify novel and urgently needed antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Glucosefosfato Desidrogenase/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Complexos Multienzimáticos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
5.
J Biomol Screen ; 17(3): 350-60, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22156224

RESUMO

Overexpression of the anti-apoptotic Bcl-2 family proteins occurs commonly in human cancers. Bfl-1 is highly expressed in some types of malignant cells, contributing significantly to tumor cell survival and chemoresistance. Therefore, it would be desirable to have chemical antagonists of Bfl-1. To this end, we devised a fluorescence polarization assay (FPA) using Bfl-1 protein and fluorescein-conjugated Bid BH3 peptide, which was employed for high-throughput screening of chemical libraries. Approximately 66 000 compounds were screened for the ability to inhibit BH3 peptide binding to Bfl-1, yielding 14 reproducible hits with ≥50% displacement. After dose-response analysis and confirmation using a secondary assay based on time-resolved fluorescence resonance energy transfer (TR-FRET), two groups of Bfl-1-specific inhibitors were identified, including chloromaleimide and sulfonylpyrimidine series compounds. FPAs generated for each of the six anti-apoptotic Bcl-2 proteins demonstrated selective binding of both classes of compounds to Bfl-1. Analogs of the sulfonylpyrimidine series were synthesized and compared with the original hit for Bfl-1 binding by both FPAs and TR-FRET assays. The resulting structure-activity relation analysis led to the chemical probe compound CID-2980973 (ML042). Collectively, these findings demonstrate the feasibility of using the HTS assay for discovery of selective chemical inhibitors of Bfl-1.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Fluorescência , Polarização de Fluorescência/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Células HeLa , Humanos , Maleimidas/metabolismo , Maleimidas/farmacologia , Antígenos de Histocompatibilidade Menor , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Pirimidinas/metabolismo , Pirimidinas/farmacologia
6.
Chem Biol ; 18(7): 825-32, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21802003

RESUMO

NLR family proteins play important roles in innate immune response. NOD1 (NLRC1) activates various signaling pathways including NF-κB in response to bacterial ligands. Hereditary polymorphisms in the NOD1 gene are associated with asthma, inflammatory bowel disease, and other disorders. Using a high throughput screening (HTS) assay measuring NOD1-induced NF-κB reporter gene activity, followed by multiple downstream counter screens that eliminated compounds impacting other NF-κB effectors, 2-aminobenzimidazole compounds were identified that selectively inhibit NOD1. Mechanistic studies of a prototypical compound, Nodinitib-1 (ML130; CID-1088438), suggest that these small molecules cause conformational changes of NOD1 in vitro and alter NOD1 subcellular targeting in cells. Altogether, this inaugural class of inhibitors provides chemical probes for interrogating mechanisms regulating NOD1 activity and tools for exploring the roles of NOD1 in various infectious and inflammatory diseases.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Proteína Adaptadora de Sinalização NOD1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Genes Reporter/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , NF-kappa B/genética , Proteína Adaptadora de Sinalização NOD1/imunologia
7.
J Biomol Screen ; 16(2): 174-82, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21245471

RESUMO

Autophagy is an evolutionarily conserved process for catabolizing damaged proteins and organelles in a lysosome-dependent manner. Dysregulation of autophagy may cause various diseases, such as cancer and neurodegeneration. However, the relevance of autophagy to diseases remains controversial because of the limited availability of chemical modulators. Herein, the authors developed a fluorescence-based assay for measuring activity of the autophagy protease, autophagin-1(Atg4B). The assay employs a novel reporter substrate of Atg4B composed of a natural substrate (LC3B) fused to an assayable enzyme (PLA(2)) that becomes active upon cleavage by this cysteine protease. A high-throughput screening (HTS) assay was validated with excellent Z' factor (>0.7), remaining robust for more than 5 h and suitable for screening of large chemical libraries. The HTS assay was validated by performing pilot screens with 2 small collections of compounds enriched in bioactive molecules (n = 1280 for Lopac™ and 2000 for Spectrum™ library), yielding confirmed hit rates of 0.23% and 0.70%, respectively. As counterscreens, PLA(2) and caspase-3 assays were employed to eliminate nonspecific inhibitors. In conclusion, the LC3B-PLA(2) reporter assay provides a platform for compound library screening for identification and characterization of Atg4B-specific inhibitors that may be useful as tools for interrogating the role of autophagy in disease models.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores Enzimáticos/metabolismo , Ensaios de Triagem em Larga Escala , Espectrometria de Fluorescência , Autofagia , Proteínas Relacionadas à Autofagia , Caspase 3/metabolismo , Cisteína Endopeptidases/genética , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ordem dos Genes , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Bibliotecas de Moléculas Pequenas
8.
Molecules ; 15(5): 3010-37, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20657462

RESUMO

The tissue-nonspecific alkaline phosphatase (TNAP) isozyme is centrally involved in the control of normal skeletal mineralization and pathophysiological abnormalities that lead to disease states such as hypophosphatasia, osteoarthritis, ankylosis and vascular calcification. TNAP acts in concert with the nucleoside triphosphate pyrophosphohydrolase-1 (NPP1) and the Ankylosis protein to regulate the extracellular concentrations of inorganic pyrophosphate (PP(i)), a potent inhibitor of mineralization. In this review we describe the serial development of two miniaturized high-throughput screens (HTS) for TNAP inhibitors that differ in both signal generation and detection formats, but more critically in the concentrations of a terminal alcohol acceptor used. These assay improvements allowed the rescue of the initially unsuccessful screening campaign against a large small molecule chemical library, but moreover enabled the discovery of several unique classes of molecules with distinct mechanisms of action and selectivity against the related placental (PLAP) and intestinal (IAP) alkaline phosphatase isozymes. This illustrates the underappreciated impact of the underlying fundamental assay configuration on screening success, beyond mere signal generation and detection formats.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Isoenzimas , Bibliotecas de Moléculas Pequenas/farmacologia
9.
PLoS One ; 4(10): e7655, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19876397

RESUMO

BACKGROUND: Intracellular proteases constitute a class of promising drug discovery targets. Methods for high throughput screening against these targets are generally limited to in vitro biochemical assays that can suffer many technical limitations, as well as failing to capture the biological context of proteases within the cellular pathways that lead to their activation. METHODS #ENTITYSTARTX00026; FINDINGS: We describe here a versatile system for reconstituting protease activation networks in yeast and assaying the activity of these pathways using a cleavable transcription factor substrate in conjunction with reporter gene read-outs. The utility of these versatile assay components and their application for screening strategies was validated for all ten human Caspases, a family of intracellular proteases involved in cell death and inflammation, including implementation of assays for high throughput screening (HTS) of chemical libraries and functional screening of cDNA libraries. The versatility of the technology was also demonstrated for human autophagins, cysteine proteases involved in autophagy. CONCLUSIONS: Altogether, the yeast-based systems described here for monitoring activity of ectopically expressed mammalian proteases provide a fascile platform for functional genomics and chemical library screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Bibliotecas de Moléculas Pequenas , Caspase 8/metabolismo , Química Farmacêutica/métodos , Técnicas de Química Combinatória , Desenho de Fármacos , Biblioteca Gênica , Genes Reporter , Humanos , Inflamação , Peptídeo Hidrolases/química , Biblioteca de Peptídeos , Relação Estrutura-Atividade , Transcrição Gênica
10.
J Biomol Screen ; 14(7): 824-37, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19556612

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) is a ubiquitous enzyme expressed at high levels in bone, liver, and kidney. It appears involved in dephosphorylation of numerous phosphate monoesters, but only 2 of them, pyrophosphate and pyridoxal phosphate, have yet been unequivocally documented. Discovery and characterization of other substrates could be considerably facilitated if specific and potent modulators of TNAP activity with various modes of action were available. Here, the authors describe in detail a high-throughput screening campaign to identify inhibitors of TNAP, performed within the Molecular Library Screening Center Network (MLSCN). A novel homogeneous luminescent TNAP assay was developed and optimized with respect to the enzyme and substrate concentrations, enabling identification of a large number of compounds overlooked by a conventional colorimetric assay. Several new chemical series were identified from screening the Molecular Libraries Small Molecule Repository (MLSMR) collection and demonstrated to have diverse selectivity and mode of inhibition profiles. The nanomolar potency of some of these scaffolds surpasses currently known inhibitors. This article provides an example of a success where the Roadmap Initiative collaborative model, sponsored by the National Institutes of Health, brought together a deep knowledge of target biology from a principal investigator's laboratory, a well-designed compound collection from the MLSMR, and an industrial-level screening facility and staff at the MLSCN center to identify pharmacologically active compounds, with outstanding selectivity data from a panel of more than 200 publicly accessible assays, through a high-throughput screen.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/farmacologia , Animais , Biocatálise/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Colorimetria , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Medições Luminescentes , Especificidade de Órgãos/efeitos dos fármacos , Reprodutibilidade dos Testes , Especificidade por Substrato/efeitos dos fármacos , Sulfanilamida , Sulfanilamidas/química
11.
Bioorg Med Chem Lett ; 19(1): 222-5, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19038545

RESUMO

Tissue-nonspecific alkaline phosphatase (TNAP) plays a central role in regulating extracellular matrix calcification during bone formation and growth. High-throughput screening (HTS) for small molecule TNAP inhibitors led to the identification of hits in the sub-micromolar potency range. We report the design, synthesis and in vitro evaluation of a series of pyrazole derivatives of a screening hit which are potent TNAP inhibitors exhibiting IC(50) values as low as 5nM. A representative of the series was characterized in kinetic studies and determined to have a mode of inhibition not previously observed for TNAP inhibitors.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Pirazóis/síntese química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Cinética , Pirazóis/farmacologia
12.
J Biomol Screen ; 13(7): 665-73, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18626112

RESUMO

Nuclear receptor TR3/Nur77/NR4A1 binds several antiapoptotic Bcl-2-family proteins (Bcl-B, Bcl-2, Bfl-1) in a non-BH3-dependent manner. A 9-amino-acid peptide derived from full-length TR3 with polyarginine tail (TR3-r8) recapitulates TR3's binding specificity, displaying high affinity for Bcl-B. TR3-r8 peptide was used to screen for small molecule Bcl-B inhibitors. A fluorescence polarization assay (FPA) employing fluorescein isothiocyanate (FITC)-labeled TR3-r8 peptide (FITC-TR3-r8) and Bcl-B protein was optimized, with nonfluorescent TR3-r8 serving to demonstrate reversible, competitive binding. Approximately 50,000 compounds were screened at 3.75 mg/L, yielding 145 reproducible hits with > or =50% FITC-TR3-r8 displacement (a confirmed hit rate of 0.29%). After dose-response analyses and counterscreening with an unrelated FITC-based FPA, 6 candidate compounds remained. Nuclear magnetic resonance (NMR) showed that 2 of these compounds bound Bcl-B, but not glutathione S-transferase (GST) control protein. One Bcl-B-binding compound was unable to displace FITClabeled BH3 peptides from Bcl-B, confirming a unique binding mechanism compared with traditional antagonists of antiapoptotic Bcl-2-family proteins. This compound bound Bcl-B with Kd 1.94 +/- 0.38 microM, as determined by isothermal titration calorimetry. Experiments using Bcl-B overexpressing HeLa cells demonstrated that this compound induced Bcl-B-dependent cell death. The current FPA represents a screen that can identify noncanonical inhibitors of Bcl-2-family proteins.


Assuntos
Proteínas de Ligação a DNA/química , Avaliação Pré-Clínica de Medicamentos/métodos , Polarização de Fluorescência/métodos , Peptídeos/química , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptores de Esteroides/química , Sequência de Aminoácidos , Calorimetria , Avaliação Pré-Clínica de Medicamentos/instrumentação , Fluoresceína-5-Isotiocianato/farmacologia , Glutationa Transferase/metabolismo , Células HeLa , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA