Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Chin J Integr Med ; 30(6): 515-524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38216838

RESUMO

OBJECTIVE: To explore the regulatory effect of Pien Tze Huang (PZH) on targeting partner of NOB1 (PNO1) and it's down-stream mediators in colorectal cancer (CRC) cells. METHODS: Quantitative polymerase chain reaction was performed to determine mRNA levels of PNO1, TP53, and CDKN1A. Western blotting was performed to determine protein levels of PNO1, p53, and p21. HCT-8 cells were transduced with a lentivirus over-expressing PNO1. Colony formation assay was used to detect cell survival in PNO1 overexpression of HCT-8 cells after PZH treatment. Cell-cycle distribution, cell viability and cell apoptosis were performed to identify the effect of PNO1 overexpression on cell proliferation and apoptosis of HCT-8 cells after PZH treatment. Xenograft BALB/c nude mice bearing HCT116 cells transduced with sh-PNO1 or sh-Ctrl lentivirus were evaluated. Western blot assay was performed to detect PNO1, p53, p21 and PCNA expression in tumor sections. Terminal deoxynucleotidyl transferase dUTP nick end labling (TUNEL) assay was used to determine the apoptotic cells in tissues. RESULTS: PZH treatment decreased cell viability, down-regulated PNO1 expression, and up-regulated p53 and p21 expressions in HCT-8 cells (P<0.05). PNO1 overexpression attenuated the effects of PZH treatment, including the expression of p53 and p21, cell growth, cell viability, cell cycle arrest and cell apoptosis in vitro (P<0.05). PNO1 knockdown eliminated the effects of PZH treatment on tumor growth, inhibiting cell proliferation inhibition and apoptosis induction in vivo (P<0.05). Similarly, PNO1 knockdown attenuated the effects of PZH treatment on the down-regulation of PNO1 and up-regulation of p53 and p21 in vivo (P<0.05). CONCLUSION: The mechanism by which PZH induces its CRC anti-proliferative effect is at least in part by regulating the expression of PNO1 and its downstream targets p53 and p21.


Assuntos
Apoptose , Proliferação de Células , Neoplasias Colorretais , Inibidor de Quinase Dependente de Ciclina p21 , Medicamentos de Ervas Chinesas , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Animais , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Células HCT116 , Regulação para Baixo/efeitos dos fármacos
2.
Front Pharmacol ; 14: 1176579, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576825

RESUMO

Background: Qing Hua Chang Yin (QHCY) is a famous formula of traditional Chinese medicine (TCM) and has been proven to have protective effect on ulcerative colitis. However, its protective effect and potential therapeutic mechanisms in chronic colitis remain unclear. The purpose of this study is to explore the effects and underlying mechanisms of QHCY on dextran sulfate sodium (DSS)-induced chronic colitis mice model. Methods: The chronic colitis model was established by administration of 2% DSS for three consecutive cycles of 7 days with two intervals of 14 days for recovery by drinking water. The experiment lasted 49 days. The DSS + QHCY group received QHCY administration by oral gavage at doses of 1.6 g/kg/d, DSS + Mesalazine group was administrated Mesalazine by oral gavage at doses of 0.2 g/kg/d. The control and DSS group were given equal volume of distilled water. The body weight, stool consistency and blood in stool were monitored every 2 days. The disease activity index (DAI) was calculated. The colon length was measured after the mice were sacrificed. The histomorphology of colonic tissues was checked by the HE and PAS staining. Immunohistochemistry was performed to detect the expressions of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6), tight junction proteins (ZO-1, occludin) and Mucin2 (MUC2). 16S rRNA sequencing analysis was conducted to study the diversity and abundance of gut microbiota changes. Results: QHCY treatment not only significantly attenuated DSS-induced the weight loss, DAI score increase, colon shortening and histological damage in mice, but also decreased the expression of pro-inflammatory cytokines in colonic tissues and increased the expression of ZO-1, occludin, and MUC2. Furthermore, QHCY enhanced the diversity of gut microbes and regulated the structure and composition of intestinal microflora in mice with chronic colitis. Conclusion: QHCY has a therapeutic effect on a murine model of chronic colitis. It can effectively reduce the clinical and pathological manifestations of colitis and prevent alterations in the gut microbiota.

3.
Curr Gastroenterol Rep ; 24(3): 43-51, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35353338

RESUMO

PURPOSE OF REVIEW: Traditional Chinese medicine (TCM) has been in use for thousands of years in Asian countries and is rapidly gaining popularity in the Western world. Among different forms of TCM, the traditional Chinese herbal therapy and acupuncture are the most popular modalities. Here, we review the fundamentals of TCMs for clinicians practicing in the West and will also detail the evidence-based utility of Chinese herbal medicine in the management of functional gastrointestinal disorders (FGIDs). RECENT FINDINGS: In the recent decades, the popularity and usage of traditional Chinese herbal medicine in FGIDs is increasing in the West. TCMs are commonly utilized by many patients with FGIDs as the conventional therapies do have limitations such as cost, inadequate symptom control and adverse effects. The unfamiliarity of TCM philosophy among clinicians in the West, and shortage of traditional Chinese herbalists remain. The philosophy of TCM is complex and entirely different from the Western medical concepts and is difficult to understand for a clinician trained in the West. Further traditional Chinese herbal therapies are often viewed skeptically by the clinicians in the West for various reasons such as lack of scientific rigor, inconsistencies in the constituents of herbal products, and also concerns due to adverse herb effects. Future clinical trials in FGIDs should focus on herb product quality, herb-drug interactions, and standardized criteria for diagnosis and management outcomes.


Assuntos
Terapia por Acupuntura , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Medicamentos de Ervas Chinesas , Gastroenteropatias , China , Medicamentos de Ervas Chinesas/uso terapêutico , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/tratamento farmacológico , Humanos , Medicina Tradicional Chinesa
4.
Mol Med Rep ; 23(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495820

RESUMO

Disruption of the intestinal mucosal barrier integrity is a pathogenic process in inflammatory bowel disease (IBD) development, and is therefore considered a drug discovery target for IBD. The well­known traditional Chinese formulation Qing Hua Chang Yin (QHCY) has been suggested as a potential therapeutic agent for the treatment of ulcerative colitis. However, the possible underlying molecular mechanisms regarding its therapeutic effect remain unclear. Consequently, the present study investigated the effects of QHCY on lipopolysaccharide (LPS)­induced loss of intestinal epithelial barrier integrity in vitro using the Caco­2 cell model of intestinal epithelium. QHCY reversed the LPS­induced decrease in transepithelial electrical resistance and significantly alleviated the increased fluorescently­labeled dextran 4 flux caused by LPS. Moreover, QHCY upregulated the mRNA and protein expression levels of occludin, zona occludens­1 and claudin­1 in LPS­exposed Caco­2 cells. In conclusion, QHCY was able to protect intestinal epithelial barrier integrity following an inflammatory insult; the protective effects of QHCY may be mediated by modulation of the expression of tight junction proteins.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/toxicidade , Junções Íntimas/metabolismo , Células CACO-2 , Células Epiteliais/patologia , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/lesões , Mucosa Intestinal/patologia , Junções Íntimas/patologia
5.
J Med Food ; 24(1): 33-39, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32522051

RESUMO

Intestinal mucosal barrier dysfunction is involved in the pathogenesis of inflammatory bowel disease, including ulcerative colitis (UC). Xinhuang tablets (XHTs) have been prescribed for several kinds of inflammatory diseases, including UC, whereas its possible underlying molecular mechanisms had never been explored. Mouse model of UC was constructed by DSS treatment and followed by XHT treatment. Disease activity index, histopathological of colonic tissue, tumor necrosis factor-alpha (TNF-α), and serum amyloid A (SAA) levels in serum were further assessed. The underlying mechanism was further explored by determination of the expression of epithelial tight junction-related protein. XHT administration ameliorated dextran sulfate sodium (DSS)-induced clinical symptoms, colonic histological injury, and decreased the circulating levels of TNF-α and SAA. Moreover, XHT treatment significantly increased the protein levels of zona occludens (ZO)-1, whereas decreased the levels of phosphorylation of Elk-1. In conclusion, this study confirmed the therapeutic effects of XHT treatment on UC in a DSS-induced mouse model, and indicated that by increasing expression of epithelial tight junctions and decreasing phosphorylation of Elk-1 might be one of the underlying mechanisms of XHT treatment on UC.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Mucosa Intestinal/fisiopatologia , Junções Íntimas/efeitos dos fármacos , Animais , Colite Ulcerativa/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Comprimidos , Proteína da Zônula de Oclusão-1/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo
6.
J Ethnopharmacol ; 258: 112767, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32199989

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The abnormal increase in vascular smooth muscle cell (VSMC) proliferation is widely accepted as the pivotal process in the vascular remodeling of hypertension. Qingda granule (QDG) is simplified from Qingxuan Jiangya Decoction (QXJYD) which has been in usage for a long time as a traditional Chinese medicine formula to treat hypertension based on the theory of traditional Chinese medicine. However, its underlying molecular mechanisms of action remain largely unknown. AIM OF STUDY: To investigate the therapeutic efficacy of QDG in the attenuation of elevation of blood pressure and proliferation of VSMCs in vivo and in vitro and explore its possible mechanism of action. MATERIALS AND METHODS: In vivo, we established an angiotensin Ⅱ (Ang Ⅱ)-mediated hypertension model in C57BL/6 mice and orally administered 1.145 g/kg/day of QDG. The systolic and diastolic blood pressures of all mice were measured at the end of the treatment by using the tail-cuff plethysmograph method and CODA™ noninvasive blood pressure system. VSMC proliferation within the aorta was determined by immunohistochemistry. In vitro, primary rat VSMCs were cultured to further verify the effects of QDG on Ang Ⅱ induced VSMC proliferation. Cell proliferation was investigated using cell counting and MTT assays. The protein expression was determined by western blotting. RESULTS: We found that oral administration of QDG significantly attenuated the elevation of blood pressure and proliferation of VSMCs in Ang Ⅱ-induced hypertensive mice. Moreover, QDG remarkably inhibited Ang Ⅱ-induced primary rat VSMCs proliferation and decreased mitogen-activated protein kinase (MAPK) and PI3K/AKT activity by attenuating the expression of phospho-extracellular signaling-regulated kinase 1/2, phospho-p38, phospho-c-Jun N-terminal kinase and phospho-protein kinase B. CONCLUSION: Collectively, our findings suggest that QDG attenuates Ang Ⅱ-induced elevation of blood pressure and proliferation of VSMCs through a decrease in the activation of MAPK and PI3K/AKT pathways. Based on this study, we postulate this could be one of the mechanisms whereby QDG effectively controls hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Hipertensão/tratamento farmacológico , Angiotensina II , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Remodelação Vascular/efeitos dos fármacos
7.
Nutr Clin Pract ; 34 Suppl 1: S27-S42, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31535732

RESUMO

The diagnosis of exocrine pancreatic insufficiency (EPI) can be difficult, as symptoms may be nonspecific. A delayed diagnosis of EPI can negatively impact health through poor weight gain, impaired growth, and malabsorption of nutrients. Because of active growth and development, children are more vulnerable to the consequences of untreated EPI. Pancreatic enzyme replacement therapy is the cornerstone of management and offers both symptomatic relief and improvement in clinical outcomes. Additionally, a high-energy diet with unrestricted fat and supplementation with fat-soluble vitamins is often required to optimize growth and prevent nutrition deficiencies. Cystic fibrosis (CF) is the most common condition in children that causes EPI, and improvement in nutrition management is associated with improved pulmonary function and increased survival. Currently, the management of other conditions leading to EPI in children is not well studied, and inferences from the CF literature are often necessary in caring for these patients.


Assuntos
Terapia de Reposição de Enzimas/métodos , Insuficiência Pancreática Exócrina/terapia , Distúrbios Nutricionais/prevenção & controle , Terapia Nutricional/métodos , Criança , Fibrose Cística/complicações , Dieta/métodos , Suplementos Nutricionais , Gerenciamento Clínico , Insuficiência Pancreática Exócrina/complicações , Insuficiência Pancreática Exócrina/etiologia , Feminino , Humanos , Masculino , Distúrbios Nutricionais/etiologia , Pâncreas/enzimologia
8.
Oncol Lett ; 18(3): 3274-3282, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31452805

RESUMO

Ursolic acid (UA) is a biologically active compound, commonly used in traditional Chinese medicine (TCM). It has been reported to exhibit strong anticancer properties against a variety of cancers. Our previous studies showed that UA promoted apoptosis in colorectal cancer (CRC) cells and inhibited cellular proliferation and angiogenesis. However, the effect and underlying molecular mechanism of UA in CRC progression remain unclear. In the present study, the role of UA in suppressing the migration and invasion of human colon cancer HCT116 and HCT-8 cells was investigated, using Transwell assays. In addition, to evaluate whether the anticancer properties of UA were mediated by the regulation of a double-negative feedback loop consisting of the transforming growth factor-ß1 (TGF-ß1)/zinc finger E-box-binding homeobox (ZEB1) pathway and microRNA (miR)-200a/b/c, reverse transcription-quantitative PCR and western blot analysis were performed. The results indicated that UA treatment significantly suppressed cellular growth, migration and invasion in HCT116 and HCT-8 cells in a dose-dependent manner. Furthermore, following UA treatment, several crucial mediators of the TGF-ß1 signaling pathway, including TGF-ß1, phosphorylated (p)-Smad2/3, p-focal adhesion kinase and ZEB1, were significantly downregulated in the HCT116 and HCT-8 cell lines compared with the control group. Furthermore, the ratio of N-cadherin/E-cadherin, two proteins directly downstream of the TGF-ß1 signaling pathway, was found to be downregulated in UA treated CRC cells. Finally, UA significantly upregulated miR200a/b/c, with miR-200c exhibiting the highest increase in expression levels following UA treatment. Collectively, the present study suggested that inhibition of CRC cell invasion by UA occurred via regulation of the TGF-ß1/ZEB1/miR-200c signaling network, which may be one of the mechanisms by which UA appears to be an effective therapeutic agent against colon cancer.

9.
Curr Nutr Rep ; 7(3): 121-130, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29982915

RESUMO

PURPOSE OF REVIEW: Energy drinks and energy shots are functional supplements with higher caffeine content marketed toward adolescents and young adults with the intention of boosting energy. Parallel to its rising popularity, there are safety concerns with the consumption of these beverages. Herein, we reviewed the impact these supplements produce on health and well-being. RECENT FINDINGS: Most of the promoted benefits of the beverages can be attributed to caffeine. The physiologic effects, if any, of other ingredients such as vitamins and herbal extracts are unclear. The presence of a higher caffeine content as compared to soft drinks may predispose to caffeine intoxication in susceptible individuals. Also, the practice of co-ingestion of these beverages with alcohol is still prevalent and associated with serious consequences. Strict regulations (restriction of sales, clear warning labels, capping caffeine levels) and public education may help prevent the adverse outcomes from these beverages.


Assuntos
Cafeína/administração & dosagem , Bebidas Energéticas/efeitos adversos , Atletas , Cafeína/efeitos adversos , Humanos , Risco
10.
Mol Med Rep ; 18(1): 1113-1119, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29845215

RESUMO

Interleukin­6 (IL­6)/signal transducer and activator of transcription 3 (STAT3) pathway plays essential roles in the development of inflammatory diseases including ulcerative colitis (UC). Therefore, suppression of IL­6/STAT3 signaling provides a promising therapeutic strategy in UC. Pien Tze Huang (PZH), a well­known traditional Chinese formula, has been used in China and Southeast Asia for centuries as a folk remedy for various inflammatory diseases. However, the molecular mechanisms of its anti­inflammatory effects remain to be elucidated. In the present study, we generated a mouse colitis model by using dextran sulfate sodium (DSS) and evaluated the therapeutic efficacy of PZH against UC by observing the clinical manifestations. We found that PZH obviously alleviated DSS­induced colitis symptoms, including body weight loss, rectal bleeding and stool consistency. In addition, administration of PZH profoundly prevented DSS­induced colon shortening, and ameliorated colonic histopathological changes such as mucosal ulceration, infiltration of inflammatory cells, crypt distortion and hyperplastic epithelium. Moreover, PZH markedly inhibited the serum level of the inflammatory biomarker serum amylase A (SAA) in UC mice. Furthermore, PZH treatment significantly inhibited DSS­induced expression of IL­6 in colon tissues. Finally, the increased phosphorylation level of STAT3, induced either by DSS in experimental mice or by IL­6 in the differentiated human colorectal carcinoma cells, was significantly suppressed by PZH. These results suggest that the inhibition of IL­6/STAT3 signaling is a potential mechanism by which PZH is used in the treatment of UC.


Assuntos
Colite Ulcerativa , Colo/metabolismo , Sulfato de Dextrana/toxicidade , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/patologia , Modelos Animais de Doenças , Humanos , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos BALB C
11.
Exp Ther Med ; 10(5): 1845-1850, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26640560

RESUMO

Previous studies have demonstrated that Hedyotis diffusa Willd (HDW), a traditional Chinese herbal medicine, exhibits potent anticancer activity in models of colorectal cancer (CRC). Aggressive forms of CRC exhibit resistance to widely used chemotherapeutic drugs, including the antimetabolite, 5-fluorouracil (5-FU); however, less is known with regard to the activity of HDW against 5-FU-resistant cancer. In the present study, the mechanism of action and the potency of ethanol extracts of HDW (EEHDW) were investigated on a multidrug-resistant CRC HCT-8/5-FU cell line. Using an MTT cell proliferation assay, EEHDW treatment was shown to significantly reduce the cell viability of HCT-8/5-FU cells in a dose- and time-dependent manner. Furthermore, EEHDW significantly increased the retention of the ATP-binding cassette (ABC) transporter substrate, rhodamine-123, as compared with the untreated controls. To further investigate the molecular mechanisms targeted by EEHDW in the resistant cells, the expression levels of the ABC drug transporter protein, P-glycoprotein (P-gp), and ABC subfamily G member 2 (ABCG2), were analyzed using reverse-transcription polymerase chain reaction and western blot analysis. The mRNA and protein expression levels of P-gp and ABCG2 were reduced in the HCT-8/5-FU cells following EEHDW treatment, indicating that EEHDW inhibits ABCG2-mediated drug resistance by downregulating the expression of ABCG2 and P-gp. Therefore, the potential application of EEHDW as a chemotherapeutic adjuvant represents a promising alternative approach to the treatment of drug-resistant CRC.

12.
Artigo em Inglês | MEDLINE | ID: mdl-25649293

RESUMO

Hypoxia-induced angiogenesis plays an important role in the development and metastasis of solid tumors and is highly regulated by HIF-1α/VEGF-A pathway. Therefore, inhibiting tumor angiogenesis via suppression of HIF-1α/VEGF-A signaling represents a promising strategy for anticancer treatment. As a traditional Chinese medicine formula, Pien Tze Huang (PZH) has long been used as a folk remedy for cancer in China and Southeast Asia. Previously, we reported that PZH inhibits colorectal cancer (CRC) growth both in vivo and in vitro. To elucidate the antitumor mechanisms of PZH, in the present study we used human umbilical vein endothelial cells (HUVEC) and colorectal carcinoma HCT-8 cells to evaluate the effects of PZH on hypoxia-induced angiogenesis and investigated the underlying molecular mechanisms. We found that PZH could inhibit hypoxia-induced migration and tube formation of HUVEC cells in a dose-dependent manner, although the low concentrations of PZH had no effect on HUVEC viability. Moreover, PZH inhibited hypoxia-induced activation of HIF-1α signaling and the expression of VEGF-A and/or VEGFR2 in both HCT-8 and HUVEC cells. Collectively, our findings suggest that PZH can inhibit hypoxia-induced tumor angiogenesis via suppression of HIF-1α/VEGF-A pathway.

13.
Int J Mol Med ; 35(4): 1133-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25633437

RESUMO

Increasing evidence indicates that the pathogenesis of ulcerative colitis (UC) is highly regulated by the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway and its negative feedback regulator, suppressor of cytokine signaling 3 (SOCS3). Therefore, modulating the signaling feedback loop of IL-6/STAT3/SOCS3 may prove to be a novel therapeutic approach for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation that has long been used in clinic for the treatment of UC. We have previously reported that QHCY ameliorates acute intestinal inflammation in vivo and in vitro through the suppression of the nuclear factor-κB (NF-κB) pathway. In the present study, in order to further elucidate the mechanisms responsible for the anti-inflammatory activities of QHCY, we stimulated human intestinal Caco-2 cells with lipopolysaccharide (LPS) to create an in vitro model of an inflamed human intestinal epithelium, and evaluated the effects of QHCY on the IL-6/STAT3/SOCS3 signaling network in inflamed Caco-2 cells. The levels of IL-6 were measured by ELISA and the levels of STAT3 and SOCS3 were measured by western blot analysis. We found that QHCY significantly inhibited the LPS-induced secretion of pro-inflammatory IL-6 in the Caco-2 cells in a dose-dependent manner. Moreover, QHCY profoundly suppressed the LPS-induced phosphorylation of Janus-activated kinase 1 (JAK1), JAK2 and STAT3. Furthermore, treatment with QHCY markedly augmented the expression of SOCS3. Taken together, the findings of the present study suggest that the modulation of the IL-6/STAT3/SOCS3 signaling network may be one of the mechanisms through which QHCY exerts its anti-inflammatory effects.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células CACO-2 , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Janus Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo
14.
Int J Oncol ; 46(2): 685-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422078

RESUMO

Tumor metastasis, a complex process involving the spread of malignant tumor cells from a primary tumor site to a distant organ, is a major cause of failure of cancer chemotherapy. Epithelial-mesenchymal transition (EMT) is a critical step for the initiation of cancer metastasis. The processes of EMT and metastasis are highly regulated by a double-negative feedback loop consisting of TGF-ß1/ZEB pathway and miR-200 family, which therefore has become a promising target for cancer chemotherapy. Pien Tze Huang (PZH), a well-known traditional Chinese formula first prescribed in the Ming Dynasty, has been demonstrated to be clinically effective in the treatment of various types of human malignancy including colorectal cancer (CRC). Our published data proposed that PZH was able to induce apoptosis, inhibit cell proliferation and tumor angiogenesis, leading to the suppression of CRC growth in vitro and in vivo. To further elucidate the mode of action of PZH, in the present study we evaluated its effects on the metastatic capacities of human colorectal carcinoma HCT-8 cells and investigated the underlying molecular mechanisms. We found that PZH significantly inhibited the migration and invasion of HCT-8 cells in a dose-dependent manner. In addition, PZH treatment inhibited the expression of key mediators of TGF-ß1 signaling, such as TGF-ß1, Smad2/3 and Smad4. Moreover, PZH treatment suppressed the expression of ZEB1 and ZEB2, two critical target genes of TGF-ß1 pathway, leading to a decrease in the expression of mesenchymal marker N-cadherin and an increased expression of epithelial marker E-cadherin. Furthermore, PZH treatment upregulated the expression of miR-200a, miR-200b and miR-200c. Collectively, our findings in this study suggest that PZH can inhibit metastasis of colorectal cancer cells via modulating TGF-ß1/ZEB/miR-200 signaling network, which might be one of the mechanisms whereby PZH exerts its anticancer function.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Proteínas de Homeodomínio/biossíntese , MicroRNAs/biossíntese , Fatores de Transcrição/biossíntese , Fator de Crescimento Transformador beta1/biossíntese , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , MicroRNAs/genética , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
15.
Artigo em Inglês | MEDLINE | ID: mdl-25505925

RESUMO

The traditional Chinese medicine formula Pien Tze Huang (PZH) has long been used as a folk remedy for cancer. To elucidate the mode of action of PZH against cancer, in the present study we used a 5-FU resistant human colorectal carcinoma cell line (HCT-8/5-FU) to evaluate the effects of PZH on multidrug resistance (MDR) and epithelial-mesenchymal transition (EMT) as well as the activation of TGF-ß pathway. We found that PZH dose-dependently inhibited the viability of HCT-8/5-FU cells which were insensitive to treatment of 5-FU and ADM, demonstrating the ability of PZH to overcome chemoresistance. Furthermore, PZH increased the intercellular accumulation of Rhodamine-123 and downregulated the expression of ABCG2 in HCT-8/5-FU cells. In addition, drug resistance induced the process of EMT in HCT-8 cells as evidenced by EMT-related morphological changes and alteration in the expression of EMT-regulatory factors, which however was neutralized by PZH treatment. Moreover, PZH inhibited MDR/EMT-enhanced migration and invasion capabilities of HCT-8 cells in a dose-dependent manner and suppressed MDR-induced activation of TGF-ß signaling in HCT-8/5-FU cells. Taken together, our study suggests that PZH can effectively overcome MDR and inhibit EMT in human colorectal carcinoma cells via suppression of the TGF-ß pathway.

16.
Mol Med Rep ; 9(1): 261-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173665

RESUMO

Accumulating evidence suggests that a small population of cells termed cancer stem cells (CSCs) are crucial in tumor development and drug resistance, leading to cancer relapse and metastasis and eventually the failure of clinical cancer treatment. Therefore, targeting CSCs is a promising approach for anticancer therapies. Due to the drug resistance and adverse effects of currently used chemotherapies, traditional Chinese medicines (TCM) have recently received attention due to the relatively few side-effects. Thus, they have been used as important alternative remedies for various diseases, including cancer. Pien Tze Huang (PZH), a well-known TCM formula that was first prescribed more than 450 years ago in the Ming Dynasty, has been used in China and Southeast Asia for centuries as a folk remedy for various types of cancer. Previously, it was reported that PZH inhibits colon cancer growth via the promotion of cancer cell apoptosis and inhibition of cell proliferation and tumor angiogenesis, which is probably mediated by its regulatory effect on multiple intracellular signaling pathways. To elucidate the mechanism of the tumoricidal activity of PZH, the aim of the present study was to investigate the effect of PZH on CSCs that were isolated as the side population (SP) from the HT-29 colorectal cancer cell line. The results demonstrated that PZH significantly and dose-dependently reduced the percentage of the colorectal cancer stem-like SP cells, decreased the viability and sphere-forming capacity of HT-29 SP cells, indicating that PZH is potent in suppressing the growth of colorectal cancer stem cells. Moreover, PZH treatment in HT-29 SP cells markedly inhibited the mRNA levels of ABCB1 and ABCG2, which are members of the ABC transporter superfamily, thereby contributing to the SP phenotype and multi-drug resistance. Findings of the present study suggest that inhibiting the growth of CSCs is a potential mechanism by which PZH can be used in cancer treatment.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Medicamentos de Ervas Chinesas/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Medicina Tradicional Chinesa , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Neovascularização Patológica/tratamento farmacológico
17.
Integr Cancer Ther ; 13(3): 240-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24231788

RESUMO

The pathogenic mechanisms underlying cancer development are complex and heterogeneous, involving multiple cellular signaling transduction pathways that usually function redundantly. In addition, crosstalk between these pathways generates a complicated and robust signaling network that is regulated by compensatory mechanisms. Given the complexity of cancer pathogenesis and progression, many of the currently used antitumor agents, which typically target a single intracellular pathway, might not always be effective on complex tumor systems. Moreover, long-term use of these agents often generates drug resistance and toxicity against normal cells. Therefore, the development of novel anticancer chemotherapies is urgently needed.Scutellaria barbataD Don (SB) is a medicinal herb that has long been used in China to treat various types of cancer. We previously reported that the ethanol extract of SB (EESB) is able to induce colon cancer cell apoptosis, inhibit cell proliferation and tumor angiogenesis via modulation of several pathways, including Hedgehog, Akt, and p53. To further elucidate the precise mechanisms of SB's antitumor activity, using a colorectal cancer (CRC) mouse xenograft model in the present study, we evaluated the therapeutic efficacy and molecular mechanisms of EESB against tumor growth. We found that EESB reduced tumor volume and tumor weight but had no effect on body weight gain in CRC mice, demonstrating that EESB could inhibit colon cancer growth in vivo without apparent adverse effect. In addition, EESB treatment could significantly suppress the activation of several CRC-related pathways, including STAT3, Erk, and p38 signalings in tumor tissues, and alter the expression of multiple critical target genes such as Bcl-2, Bax, Cyclin D1, CDK4, and p21. These molecular effects lead to the induction of cancer cell apoptosis and inhibition of cell proliferation. Our findings demonstrate that SB possesses a broad range of antitumor activities because of its ability to affect multiple intracellular targets.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Scutellaria , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncol Lett ; 6(4): 1123-1127, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24137475

RESUMO

Spica Prunellae has long been used as a significant component in numerous traditional Chinese medicine (TCM) formulas to clinically treat cancers. Previously, Spica Prunellae was shown to promote cancer cell apoptosis and inhibit angiogenesis in vivo and in vitro. To further elucidate the precise mechanism of its tumoricidal activity, the effect of the ethanol extract of Spica Prunellae (EESP) on the proliferation of human colon carcinoma HT-29 cells was elucidated and the underlying molecular mechanisms were investigated. The proliferation of HT-29 cells was evaluated using 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation analyses. The cell cycle was determined using fluorescence-activated cell sorting (FACS) with propidium iodide (PI) staining. The mRNA and protein expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1 was examined using RT-PCR and western blotting, respectively. EESP was observed to inhibit HT-29 viability and survival in a dose- and time-dependent manner. Furthermore, EESP treatment blocked G1/S cell cycle progression and reduced the expression of pro-proliferative cyclin D1 and CDK4 at the transcriptional and translational levels. Altogether, these data suggest that the inhibition of cell proliferation via G1/S cell cycle arrest may be one of the mechanisms through which Spica Prunellae treats cancer.

19.
Int J Oncol ; 43(5): 1666-74, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24042330

RESUMO

Angiogenesis plays a critical role in the development of solid tumors by supplying nutrients and oxygen to support continuous growth of tumor as well as providing an avenue for hematogenous metastasis. Tumor angiogenesis is highly regulated by multiple intracellular signaling transduction cascades such as Hedgehog, STAT3, Akt and p70S6K pathways that are known to malfunction in many types of cancer including colorectal cancer (CRC). Therefore, suppression of tumor angiogenesis through targeting these signaling pathways has become a promising strategy for cancer chemotherapy. Ursolic acid (UA) is a major active compound present in many medicinal herbs that have long been used in China for the clinical treatment of various types of cancer. Although previous studies have demonstrated an antitumor effect for UA, the precise mechanisms of its anti-angiogenic activity are not well understood. To further elucidate the mechanism(s) of the tumorcidal activity of UA, using a CRC mouse xenograft model, chick embryo chorioallantoic membrane (CAM) model, the human colon carcinoma cell line HT-29 and human umbilical vein endothelial cells (HUVECs), in the present study we evaluated the efficacy of UA against tumor growth and angiogenesis in vivo and in vitro and investigated the underlying molecular mechanisms. We found that administration of UA significantly inhibited tumor volume but had no effect on body weight changes in CRC mice, suggesting that UA can suppress colon cancer growth in vivo without noticeable signs of toxicity. In addition, UA treatment reduced intratumoral microvessel density (MVD) in CRC mice, decreased the total number of blood vessels in the CAM model, and dose and time-dependently inhibited the proliferation, migration and tube formation of HUVECs, demonstrating UA's antitumor angiogenesis in vivo and in vitro. Moreover, UA treatment inhibited the expression of critical angiogenic factors, such as VEGF-A and bFGF. Furthermore, UA suppressed the activation of sonic hedgehog (SHH), STAT3, Akt and p70S6K pathways. Collectively, our findings suggest that inhibition of tumor angiogenesis via suppression of multiple signaling pathways might be one of the mechanisms whereby UA can be effective in cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide , Neoplasias Colorretais/patologia , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Ursólico
20.
Exp Ther Med ; 6(1): 189-193, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23935744

RESUMO

Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD), which is tightly regulated by the nuclear factor κB (NF-κB) pathway. Thus, the suppression of NF-κB signaling may provide a promising strategy for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation, which has been used for a number of years to clinically treat UC. However, little is known with regard to its anti-inflammatory properties. In the present study, lipopolysaccharide (LPS)-stimulated Caco-2 cells were used as an in vitro inflammatory model of the human intestinal epithelium to evaluate the anti-inflammatory effects of QHCY and its underlying molecular mechanisms. We observed that QHCY inhibited the inflammatory response in intestinal epithelial cells as it significantly and concentration-dependently reduced the LPS-induced secretion of pro-inflammatory TNF-α and IL-8 in Caco-2 cells. Furthermore, QHCY treatment inhibited the phosphorylation of IκB and the nuclear translocation of NF-κB in Caco-2 cells in a concentration-dependent manner, indicating that QHCY suppressed the activation of the NF-κB signaling pathway. Collectively, our results suggest that the inhibition of NF-κB-mediated inflammation may constitute a potential mechanism by which QHCY treats UC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA