Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 327: 138497, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001759

RESUMO

In nanoscience and nanobiotechnology, using plant extracts in synthesizing metal nanoparticles (NPs) has recently come to light as an exciting opportunity with several benefits over traditional physicochemical methods. In the present work, zinc oxide (ZnO) based nanoparticles (NPs) were synthesized by green chemistry route using lychee peel extract to capture hazardous congo red dye from wastewater and illustrate their antimicrobial behavior. The X-Ray Diffraction (XRD) spectra confirm the wurtzite crystal structure, and Fourier Transform Infrared (FTIR) spectra confirm the functional group in ZnO, which is suitable for dye adsorption. It was found that the NPs were spherical and had a size of <10 nm. The synthesized ZnO NPs could effectively remove >98% of CR dye from wastewater within 120 min of contact time at a wide pH range from 2 to 10. The primary mechanism involved in removing dye was the electrostatic interaction between ZnO adsorbent and CR dye. The antimicrobial performance of synthesized ZnO NPs was found to show 34% inhibition against Bacillus subtilis (ATCC 6538), 52% against Escherichia coli (ATCC 11103), 58% against Pseudomonas aeruginosa (ATCC 25668) and 32% against Staphylococcus aureus (ATCC 25923) using well diffusion assay. ZnO demonstrates a suitable anti-bacterial property over both gram-positive and gram-negative pathogenic bacteria. Overall, the green synthesized method for developing ZnO NPs shows promising and significant anti-bacterial performance and is a highly potential adsorbent for removing CR dye from wastewater.


Assuntos
Anti-Infecciosos , Litchi , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Águas Residuárias , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana
2.
Sci Total Environ ; 849: 157753, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35931161

RESUMO

Soil pollution from petroleum hydrocarbon is a global environmental problem that could contribute to the non-actualisation of the United Nations Sustainable Development Goals. Several techniques have been used to remediate petroleum hydrocarbon-contaminated soils; however, there are technical and economical limitations to existing methods. As such, the development of new approaches and the improvement of existing techniques are imperative. Biochar, a low-cost carbonaceous product of the thermal decomposition of waste biomass has gained relevance in soil remediation. Biochar has been applied to remediate hydrocarbon-contaminated soils, with positive and negative results reported. Consequently, attempts have been made to improve the performance of biochar in the hydrocarbon-based remediation process through the co-application of biochar with other bioremediation techniques as well as modifying biochar properties before use. Despite the progress made in this domain, there is a lack of a detailed single review consolidating the critical findings, new developments, and challenges in biochar-based remediation of petroleum hydrocarbon-contaminated soil. This review assessed the potential of biochar co-application with other well-known bioremediation techniques such as bioaugmentation, phytoremediation, and biostimulation. Additionally, the benefits of modification in enhancing biochar suitability for bioremediation were examined. It was concluded that biochar co-application generally resulted in higher hydrocarbon removal than sole biochar treatment, with up to a 4-fold higher removal observed in some cases. However, most of the biochar co-applied treatments did not result in hydrocarbon removal that was greater than the additive effects of individual treatment. Overall, compared to their complementary treatments, biochar co-application with bioaugmentation was more beneficial in hydrocarbon removal than biochar co-application with either phytoremediation or biostimulation. Future studies should integrate the ecotoxicological and cost implications of biochar co-application for a viable remediation process. Lastly, improving the synergistic interactions of co-treatment on hydrocarbon removal is critical to capturing the full potential of biochar-based remediation.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
Environ Int ; 154: 106553, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872955

RESUMO

Petroleum hydrocarbons represent one of the most common soil contaminants, whose presence poses a significant risk to soil biota and human health; for example, in Europe, hydrocarbon contamination accounts for more than 30% of contaminated sites. The use of biochar as a proposed alternative to the conventional remediation of soil contaminated with petroleum hydrocarbons has gained credence in recent times because of its cost-effectiveness and environmentally friendly nature. Biochar is a carbonaceous material produced by heating biomass in an oxygen-limited environment at high temperature. This review provides an overview of the application of biochar to remediate petroleum hydrocarbon-contaminated soils, with emphasis on the possibility of biochar functioning as a biostimulation agent. The properties of biochar were also examined. Furthermore, the mechanism, ecotoxicological impact and possible factors affecting biochar-based remediation are discussed. The review concludes by examining the drawbacks of biochar use in the remediation of hydrocarbon-contaminated soils and how to mitigate them. Biochar impacts soil microbes, which may result in the promotion of the degradation of petroleum hydrocarbons in the soil. Linear regression between bacterial population and degradation efficiency showed that R2 was higher (0.50) and significant in treatment amended with biochar or both biochar and nutrient/fertiliser (p < 0.01), compared to treatment with nutrient/fertiliser only or no amendment (R2 = 0.11). This suggest that one of the key impacts of biochar is enhancing microbial biomass and thus the biodegradation of petroleum hydrocarbons. Biochar represents a promising biostimulation agent for the remediation of hydrocarbon-contaminated soil. However, there remains key questions to be answered.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Europa (Continente) , Humanos , Hidrocarbonetos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
4.
Waste Manag ; 124: 144-153, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621758

RESUMO

Sewage sludge-derived biochar (SSB) is a phosphorus (P) source with potential to replace soluble P fertilizers. However, SSB presents a diversity of P compounds, mainly in mineral forms with different degrees of chemical stability. This hinders the prediction of P bioavailability. In the present study we evaluated P solubility and bioavailability using different chemical extractants. Additionally, the relationships between extractable P and physicochemical properties were evaluated for SSB obtained over a wide range of temperatures (200 °C; 300 °C; 500 °C and 600 °C). Available phosphorus content was extracted using 2% citric acid (P-CA), neutral ammonium citrate + water (P-NAC) and Mehlich 1 solution (0.0125 mol L-1 H2SO4 + 0.050 mol L-1 HCl). Physicochemical properties and extractable P were strongly affected by pyrolysis temperature. Higher pyrolysis temperature resulted in increased pH, BET surface area, pore volume, ash, fixed carbon, Ca, Mg and Zn contents, as well as formation of stable Ca minerals (calcite and oxalate). The total P content increased with pyrolysis temperature (≥300 °C). Nevertheless, the solubility of biochar-P in the extractants presented different trends with temperature. The P-NAC content reached a maximum (79% of TP) at 300 °C and then declined at higher temperatures. Only at 600 °C P-CA and available P were affected by the temperature, where the P-CA increased and available P decreased. Therefore, it is recommended that the P solubility in different extractants should be considered when using SSB as an alternative to inorganic P fertilizers.


Assuntos
Pirólise , Esgotos , Carvão Vegetal , Fertilizantes , Fósforo , Temperatura
5.
Environ Toxicol Chem ; 40(3): 792-798, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33074584

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have emerged as contaminants of global concern. Among several PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are persistent and bioaccumulative compounds. We investigated the cyto-genotoxic potential of PFOS to Allium cepa root meristem cells. The A. cepa root tips were exposed to 6 different concentrations (1-100 mg L-1 ) of PFOS for 48 h. Reduction in mitotic index and chromosomal aberrations was measured as genotoxic endpoints in meristematic root cells. Exposure to PFOS significantly affected cell division by reducing the miotic index at higher concentrations (>10 mg L-1 ). The median effect concentration of PFOS to elicit cytotoxicity based on the mitotic index was 43.2 mg L-1 . Exposure to PFOS significantly increased chromosomal aberrations at concentrations >25 mg L-1 . The common aberrations were micronuclei, vagrant cells, and multipolar anaphase. The alkaline comet assay revealed a genotoxic potential of PFOS with increased tail DNA percentage at concentrations >25 mg L-1 . To our knowledge, this is the first study to report the cyto-genotoxic potential of PFOS in higher plants. Environ Toxicol Chem 2021;40:792-798. © 2020 SETAC.


Assuntos
Fluorocarbonos , Cebolas , Ácidos Alcanossulfônicos , Aberrações Cromossômicas , Dano ao DNA , Fluorocarbonos/toxicidade , Meristema/genética , Índice Mitótico , Cebolas/genética , Raízes de Plantas
6.
Orthop Rev (Pavia) ; 10(1): 7541, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29770179

RESUMO

Instrumentation failure is a common complication following complex spinal reconstruction and deformity correction. Rod fracture is the most frequent mode of hardware failure and often occurs at or near a 3-column osteotomy site. Titanium (Ti) rods are commonly utilized for spinal fixations, however, theoretically stiffer materials, such as cobalt-chrome (CoCr) rods are also available. Despite ongoing use in clinical practice, there is little biomechanical evidence that compares the construct ability to withstand fatigue stress for Ti and Co-Cr rods. Six models using 2 polyethylene blocks each were used to simulate a pedicle subtraction osteotomy. Within each block 6.0×45 mm polyaxial screws were placed and connected to another block using either two 6.0×100 mm Ti (3 models) or CoCr rods (3 models). The rods were bent to 40° using a French bender and were secured to the screws to give a vertical height of 1.5 cm between the blocks. The blocks were fatigue tested with 700N at 4 Hz until failure. The average number of cycles to failure for the Ti rod models was 12840 while the CoCr rod models failed at a significantly higher, 58351 cycles (P=0.003). All Ti models experienced rod fracture as the mode of failure. Two out of the three CoCr models had rod fractures while the last sample failed via screw fracture at the screw-tulip junction. The risk of rod failure is substantial in the setting of long segment spinal arthrodesis and corrective osteotomy. Efforts to increase the mechanical strength of posterior constructs may reduce the occurrence of this complication. Utilizing CoCr rods in patients with pedicle subtraction osteotomy may reduce the rate of device failure during maturation of the posterior fusion mass and limit the need for supplemental anterior column support.

7.
Artigo em Inglês | MEDLINE | ID: mdl-27081574

RESUMO

The recent FDA approval of two drugs to treat the basic defect in cystic fibrosis has given hope to patients and their families battling this devastating disease. Over many years, with heavy financial investment from Vertex Pharmaceuticals and the Cystic Fibrosis Foundation, pre-clinical evaluation of thousands of synthetic drugs resulted in the production of Kalydeco and Orkambi. Yet, despite the success of this endeavor, many other compounds have been proposed as therapeutic agents in the treatment of CF. Of note, several of these compounds are naturally occurring, and are present in spices from the grocery store and over the counter preparations in health food stores. In this short review, we look at three such compounds, genistein, curcumin, and resveratrol, and evaluate the scientific support for their use as therapeutic agents in the treatment of patients with CF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA