Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 304: 135346, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35714954

RESUMO

Microalgae have the highest capability to fix the atmospheric carbon and wastewater-derived nutrients to produce high-value bioproducts including lipids and carotenoids. However, their lower titers and single-product-oriented biomass processing have made the overall process expensive. Hence, increased metabolite titer and processing of the biomass for more than one product are required to ensure the commercial robustness of the algal biorefinery. In this study, a newly isolated algal strain was identified as Bracteacoccus pseudominor BERC09 through phylogenetic analysis based on the 18S rRNA gene sequence. Basic characterization of the strain revealed its promising potential to produce carotenoids and lipids. The lipids and carotenoid biosynthesis pathways of BERC09 were further triggered by manipulating the abiotic factors including nitrogen sources (NaNO3, KNO3, NH4Cl, Urea), nitrogen concentrations (0.06-0.36 gL-1), light intensity (150 µmolm-2s-1 to 300 µmolm-2s-1), and light quality (white and blue). Resultantly, 300 µmolm-2s-1 of blue light yielded 0.768 gL-1 of biomass, 8.4 mgg-1 of carotenoids, and 390 mgg-1 of lipids, and supplementation of 0.36 gL-1 of KNO3 further improved metabolism and yielded 0.814 gL-1 of biomass, 11.86 mgg-1 of carotenoids, and 424 mgg-1 of lipids. Overall, the optimal combination of light and nitrogen concurrently improved biomass, carotenoids, and lipids by 3.5-fold, 6-fold, and 4-fold than control, respectively. Besides, the excellent glycoproteins-based self-flocculation ability of the strain rendered an easier harvesting via gravity sedimentation. Hence, this biomass can be processed in a cascading fashion to use this strain as a candidate for a multiproduct biorefinery to achieve commercial robustness and environmental sustainability.


Assuntos
Clorofíceas , Microalgas , Biomassa , Carotenoides/metabolismo , Clorofíceas/metabolismo , Lipídeos , Microalgas/metabolismo , Nitrogênio/metabolismo , Filogenia
2.
Chemosphere ; 293: 133571, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35026203

RESUMO

Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgae-based synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais , Plantas , Águas Residuárias
4.
Sci Total Environ ; 704: 135303, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31818584

RESUMO

Water shortage is one of the leading global problems along with the depletion of energy resources and environmental deterioration. Recent industrialization, global mobility, and increasing population have adversely affected the freshwater resources. The wastewater sources are categorized as domestic, agricultural and industrial effluents and their disposal into water bodies poses a harmful impact on human and animal health due to the presence of higher amounts of nitrogen, phosphorus, sulfur, heavy metals and other organic/inorganic pollutants. Several conventional treatment methods have been employed, but none of those can be termed as a universal method due to their high cost, less efficiency, and non-environment friendly nature. Alternatively, wastewater treatment using microalgae (phycoremediation) offers several advantages over chemical-based treatment methods. Microalgae cultivation using wastewater offers the highest atmospheric carbon fixation rate (1.83 kg CO2/kg of biomass) and fastest biomass productivity (40-50% higher than terrestrial crops) among all terrestrial bio-remediators with concomitant pollutant removal (80-100%). Moreover, the algal biomass may contain high-value metabolites including omega-3-fatty acids, pigments, amino acids, and high sugar content. Hence, after extraction of high-value compounds, residual biomass can be either directly converted to energy through thermochemical transformation or can be used to produce biofuels through biological fermentation or transesterification. This review highlights the recent advances in microalgal biotechnology to establish a biorefinery approach to treat wastewater. The articulation of wastewater treatment facilities with microalgal biorefinery, the use of microalgal consortia, the possible merits, and demerits of phycoremediation are also discussed. The impact of wastewater-derived nutrient stress and its exploitation to modify the algal metabolite content in view of future concerns of cost-benefit ratios of algal biorefineries is also highlighted.


Assuntos
Microalgas/fisiologia , Eliminação de Resíduos Líquidos/métodos , Carbono , Sequestro de Carbono , Poluentes Ambientais , Nitrogênio , Fósforo , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA