Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pathogens ; 12(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37887762

RESUMO

Using plant extracts as eco-friendly reducing and stabilizing agents for the synthesis of nanoparticles has gained significant attention in recent years. The current study explores the green synthesis of silver nanoparticles (AgNPs) using the Avena fatua extract and evaluates their antifungal activity against Fusarium oxysporum f.sp. lycopersici (Fol), a fungal plant pathogen. A green and sustainable approach was adopted to synthesize silver nanoparticles before these nanoparticles were employed for anti-fungal activity. The primary indication that AgNPs had formed was performed using UV-vis spectroscopy, where a strong peak at 425 nm indicated the effective formation of these nanoparticles. The indication of important functional groups acting as reducing and stabilizing agents was conducted using the FTIR study. Additionally, morphological studies were executed via SEM and AFM, which assisted with more effectively analyzing AgNPs. Crystalline behavior and size were estimated using powder XRD, and it was found that AgNPs were highly crystalline, and their size ranged from 5 to 25 nm. Synthesized AgNPs exhibited significant antifungal activity against Fol at a concentration of 40 ppm. Furthermore, the inhibitory index confirmed a positive correlation between increasing AgNPs concentration and exposure duration. This study suggests that the combined phytochemical mycotoxic effect of the plant extract and the smaller size of synthesized AgNPs were responsible for the highest penetrating power to inhibit Fol growth. Moreover, this study highlights the potential of using plant extracts as reducing and capping agents for the green synthesis of AgNPs with antifungal properties. The study concludes that A. fatua extract can synthesize antifungal AgNPs as a sustainable approach with robust antifungal efficacy against Fol, underscoring their promising potential for integration into plant protection strategies.

2.
Ecotoxicol Environ Saf ; 226: 112853, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619475

RESUMO

Climate change and the consequent alteration in agricultural circumstances enhance the susceptibility of fresh water use particularly in water-scarce regions. Marginal quality water reuse is a common alternative practice but possible perils of metal accretion in plant parts are mostly ignored. The present research aimed to probe the impact of treated wastewater (TWW) and untreated wastewater (UTWW) on metal accumulation in flower petals and their influence on essential oil contents of fragrant Rosa species (R. Gruss-an-teplitz, R. bourboniana, R. centifolia, R. damascena) in a peri-urban area of Faisalabad, Pakistan during January, 2017 to December, 2018. The mineral and chemical contents in canal water (CW) and TWW were less than recommended levels of national environmental quality standards (NEQS) for wastewater of Pakistan. The experimentally UTWW possessed higher electrical conductivity (EC), biological and chemical oxygen demand (BOD and COD), and some metals (Pb, Co, Cr) that were above the permissible levels. The experimental data revealed that except Cr other metals contents in the flower petals were less than the WHO recommended limits (for medicinal plants) under experimental irrigation regimes. Rosa centifolia and R. damascena possessed higher metal i.e. Zn, Cu, Pb, Cr, Co contents while Fe and Ni contents were higher in R. Gruss-an-Teplitz and R. bourboniana respectively. There were twelve constituents which were detected in essential oil by gas chromatography. Major constituents were phenyl ethyl alcohol, citronellol, geranyl acetate, γ- undelactone, methyl eugenol, and limonene whose share was 48.17%, 41.11%, 8.46%, 4.82%, 4.44%, and 4.15% respectively whereas concentrations of other 06 constituents were less than 3.7%. Phenyl ethyl alcohol, lion shared constituent of essential oil was found highest (48.17%) in R. Gruss-an-Teplitz whereas minimum level was recorded in R. damascena (28.84%) under CW. In contrast, citronellol (chief component of fragrance) was highest in R. damascena (41.11%) in UTWW while the lowest level was found in R. Gruss-an-Teplitz (17.41%) in CW. This study confirmed the variations in metal concentrations of Rosa species due to different absorbability of each metal in flower petals. It also indicates that wastewater did not affect the composition but there were quantitative differences in aroma constituents and chemical composition of essential oil.


Assuntos
Metais Pesados , Óleos Voláteis , Rosa , Monitoramento Ambiental , Flores/química , Metais Pesados/análise , Águas Residuárias/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA