RESUMO
A field study was designed to explore the impacts of foliar-applied chemically and green synthesized titanium dioxide nanoparticles (TiO2 NPs) on cadmium (Cd) uptake in wheat plants. The wheat was grown in field which was contaminated with Cd and plants were subjected to foliar episodes of TiO2 NPs during plant growth period. Leaf extracts of two plant species (Trianthema portulacastrum, Chenopodium quinoa) were used for green synthesis while sol-gel method was used for chemical preparation of TiO2 NPs. Results showed that TiO2 NPs significantly enhanced the plant height, length of spikes photosynthesis, and straw and grain yield compared to control. TiO2 NPs minimized the oxidative burst in leaves and improved the enzyme activities than control. Cadmium concentrations of straw, roots and grains decreased after TiO2 NPs treatments than control. The grain Cd contents were below recommended threshold (0.2 mg Cd /kg grain DW) for cereals upon NPs exposure. The health risk index by the dietary use of grains for adults was below threshold upon NPs exposure. Overall, foliar use of TiO2 NPs prepared from plant extracts was appropriate in minimizing Cd contents in wheat grains, thereby reducing risk of Cd to human health via food chain.
Assuntos
Nanopartículas , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Humanos , Solo , Poluentes do Solo/análise , Titânio , TriticumRESUMO
In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg-1) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg-1) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg-1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.