Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630228

RESUMO

The rhizome of Atractylodes lancea (Thunb.) DC. (AL), called Maocangzhu in Chinese, is a geoherbalism medical herb in Jiangsu Province that is often used in the prescription of traditional Chinese medicine (TCM), such as for the treatment of COVID-19. The landform and climatic environment of each province varies greatly from south to north, which has an important influence on the chemical constituents in AL. However, there is a lack of research on the significance of its geoherbalism, especially in water-soluble parts other than volatile oil. In this study, eight known compounds were isolated and obtained as reference substances from AL. In addition, liquid chromatography coupled with triple-quadrupole time-of-flight tandem mass spectrometry (LC-triple TOF-MS/MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze and characterize chemical constituents from different habitats. Moreover, orthogonal partial least-squares discriminant analysis (OPLS-DA) was applied to reveal the differential metabolomics in AL from different habitats based on the qualitative information of the chemical constituents. Results showed that a total of 33 constituents from GC-MS and 106 constituents from LC-triple TOF-MS/MS were identified or inferred, including terpenoids, polyacetylenes, and others; meanwhile, the fragmentation pathways of different types of compounds were preliminarily deduced from the fragmentation behavior of the major constituents. According to the variable importance in projection (VIP) and p-values, only one volatile differential metabolite was identified by GC-MS screening: ß-eudesmol. Overall, five differential metabolites were identified by LC-triple TOF-MS/MS screening: sucrose, 4(15),11-eudesmadiene; atractylenolide I, 3,5,11-tridecatriene-7,9-diyne-1,2-diacetate, and (3Z,5E,11E)-tridecatriene-7,9-diynyl-1-O-(E)-ferulate. This study provides metabolomic information for the establishment of a comprehensive quality evaluation system for AL.


Assuntos
Atractylodes , COVID-19 , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Metabolômica , Cromatografia Líquida
2.
J Pharm Biomed Anal ; 229: 115372, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37018956

RESUMO

Guang Dilong [P. aspergillum (E. Perrier)], is an animal-derived traditional Chinese medicine made from the dried body of Pheretima aspergillum (E. Perrier) (TCM). Due to its widely application and high medical values, preparations of P. aspergillum (E. Perrier) may be adulterated by four other species, including three crucial Pheretima species [P. vulgaris (Chen), P. pectinifera (Mkhaeken), and P. guillemi (Michaelsen)] and one considerable adulteration [Metaphire magna (Chen)]. This study developed a novel and effective strategy for analyzing and authenticating Guang Dilong based on enzymatic digestion of protein. The nanoLC-MS/MS technique used to evaluate complete peptidomics profiles of trypsin-digested samples, resulting in the identification of species-specific peptide biomarkers in P. aspergillum (E. Perrier). The significance of different samples and peptides in the target species set was then investigated using mathematical set theory. Consequently, seven peptides were chosen as prospective biomarkers. Finally, five specific peptide biomarkers for differentiating Guang Dilong with other species were confirmed and validated using UFLC-MS/MS and MRM mode. The suggested technique may also be beneficial in evaluating the quality of other animal-derived goods for safety issues in order to avoid misidentification.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Biomarcadores , Digestão
3.
J Ethnopharmacol ; 297: 115525, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35811027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guizhi-Fuling capsule (GZFL), a well-known herbal remedy, has been widely used to treat primary dysmenorrhea (PD). Hence, systematic identifying multiple active ingredients and the involved mechanism is essential and urgently needed for GZFL. AIM OF THE STUDY: This study was planned to assess the pharmacokinetics of GZFL in rats, and identify whether these GZFL-derived absorbed components (ACs) contribute to the efficacy of source herbs and relevant mechanism. MATERIALS AND METHODS: The in vivo pharmacokinetic profile of 11 phytochemicals and 13 metabolites in healthy and PD rats were evaluated using liquid chromatography with mass spectrometry (LC-MS/MS). Whereafter, the introduced contribution strategy assessed ACs' effect (doses = their contents in GZFL) in PD rats with the mechanism. RESULT: The pharmacokinetic profiles of prototypes and metabolites differed in healthy and PD rats. As a main proxy of GZFL, 11ACs exerted an anti-PD effect (improvement of indexes for writhing latency, writhing time, PGF2α/PGE2, TXB2/6-keto-PGF1α and ß-EP) by regulating PI3K-Akt/ERK pathway. CONCLUSION: As a paradigmatic example, 11ACs contributed an average of 113.55% to GZFL in terms of anti-PD efficacy, providing an approach to rapidly, accurately and consistently identify the bioactive components and their pathway from herbs.


Assuntos
Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Animais , Cromatografia Líquida , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Dismenorreia/tratamento farmacológico , Feminino , Humanos , Prostaglandinas F , Proteínas Proto-Oncogênicas c-akt , Ratos , Espectrometria de Massas em Tandem/métodos
4.
Zhongguo Zhong Yao Za Zhi ; 46(12): 3133-3143, 2021 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-34467705

RESUMO

To study the effect of mineral Chloriti Lapis on pulmonary metabolites and metabolic pathways in lung tissues of rats with acute exacerbation of chronic obstructive pulmonary disease(AECOPD). The AECOPD rat model of phlegm heat syndrome was replicated by the method of smoking combined with Klebsiella pneumoniae infection. Except for using UPLC-Q-TOF-MS analysis, SPSS 18.0, SIMCA 13.0 and other software were also used for statistical analysis. Through literature search and online database comparison, the differential metabolites were identified, and the possible metabolic pathways were analyzed. After 15 days of administration, PLS-DA analysis was carried out on lung tissue samples of rats in each group. The results showed that the metabolic profiles of lung tissues of rats in each group could be well separated, which indicated that Chloriti Lapis and aminophylline had significant intervention effect on the lung metabolic profile of rats with AECOPD. Moreover, the metabolic profile of Chloriti Lapis group was closer to that of control group, and the intervention effect was better than that of aminophylline group. As a result, 15 potential differential metabolites were identified: phytosphingosine, sphinganine, tetradecanoylcarnitine, L-palmitoylcarnitine, elaidic carnitine, lysoPC[18∶2(9Z,12Z)], lysoPC(16∶0), lysoPC[18∶1(9Z)], lysoPC(18∶0), stearic acid, lysoPC(15∶0), arachidonic acid, docosapentaenoic acid, linoleic acid and palmitic acid. Among them, Chloriti Lapis could significantly improve the levels of 10 differential metabolites of phytosphingosine, tetradecanoylcarnitine, L-palmitoylcarnitine, elaidic carnitine, lysoPC[18∶2(9Z,12Z)], lysoPC(16∶0), lysoPC[18∶1(9Z)], stearic acid, lysoPC(15∶0), and palmitic acid(P<0.05). The intervention effect of Chloriti Lapis group was better than that of aminophylline group. Analysis of metabolic pathways showed that there were 8 possible metabolic pathways that could be affected, and three of the most important metabolic pathways(pathway impact>0.1) were involved: linoleic acid metabolism, arachidonic acid metabolism, and sphingolipid metabolism. Chloriti Lapis had obvious intervention effects on lung tissue-related metabolites and metabolic pathways in rats with AECOPD, and the effect was better than that of aminophyllinne.


Assuntos
Medicina Tradicional Chinesa , Doença Pulmonar Obstrutiva Crônica , Animais , Pulmão , Metabolômica , Minerais , Ratos
5.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3694-3704, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34402294

RESUMO

The effects of Chloriti Lapis on metal elements in plasma and lung tissue of acute exacerbation of chronic obstructive pulmonary disease( AECOPD) rats were studied. The rat AECOPD model with phlegm heat syndrome was established by smoking combined with Klebsiella pneumoniae infection. After the rats were treated by Chloriti Lapis,the contents of metal elements in plasma and lung tissue were determined by inductively coupled plasma-optical emission spectroscopy( ICP-OES) and inductively coupled plasma mass spectrometry( ICP-MS). The changes in the contents of metal elements were analyzed by SPSS 18. 0. Further,the correlations of differential metal elements( including Cu/Zn ratio) with differential metabolites in plasma,lung tissue and urine of AECOPD rats treated with Chloriti Lapis were analyzed. The results showed that Chloriti Lapis significantly up-regulated the contents of Fe,Al,Mn,Cu,Zn,Sn( P<0. 05),V,Co( P< 0. 01) and Cu/Zn ratio( P< 0. 05),and significantly down-regulated the contents of Ti( P< 0. 05)and Pb( P<0. 05) in the model rat plasma. It significantly increased the content of Be( P<0. 05) and decreased the contents of Mg,Ti and Al( P<0. 01) in model rat lung tissue. The element profiles of normal group,model group and Chloriti Lapis group can be well separated. Chloriti Lapis group and other groups were clustered into two categories. The taurine in plasma and phytosphingosine in lung tissue had the strongest correlations with differential metal elements. The Fe,Al,Mg,Be,Ti,V,Mn,Cu,Zn,Sn,and Co in Chloriti Lapis may directly or indirectly participate in the intervention of AECOPD rats. This group of metal elements may be the material basis of Chloriti Lapis acting on AECOPD rats,and reduce the Cu/Zn value in vivo. It was further confirmed that Chloriti Lapis could interfere with the metabolic pathways of taurine and hypotaurine in plasma and urine as well as the sphingolipid metabolism pathway in lung tissue of AECOPD rats. In addition,this study confirmed that long-term smoking can cause high-concentration Cd accumulation in the lung and damage the lung tissue.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Oligoelementos , Animais , Pulmão , Medicina Tradicional Chinesa , Minerais , Ratos , Análise Espectral , Oligoelementos/análise
6.
J Ethnopharmacol ; 266: 113283, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32827659

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zhi-zi-chi decoction (ZZCD) is used for treating depression as an effectively traditional Chinese medicine. Until now, studies on pharmacological research of ZZCD have mostly been centered in pharmacokinetic level. Little was known about its pharmacological mechanism of relieving depression. AIM OF THE STUDY: This study was to evaluate the effect of ZZCD on relieving depression via behavioral tests, serum metabolomics and signaling target expression analysis on chronic unpredictable mild stress (CUMS) model mice. MATERIALS AND METHODS: The CUMS exposure lasted 7 consecutive weeks. The mice were administrated with ZZCD for the last 3 weeks. Behavioral tests were applied and a serum metabolomics method based on UFLC/Q-TOF-MS with multivariate statistical and global metabolic network analysis was performed to identify relevant metabolites and pathways. Finally, the protein expressions in mouse hippocampi were determined by western blot to verify the metabolomics deduction. RESULTS: Behavioral parameters were visibly changed after modeling, while high and medium dosage groups showed status improvement compared to the model group. Seventy six metabolites were identified as potential biomarkers from the metabolomics profiles in C18 and HILIC systems. In addition, 9 significant pathways related to changed biomarkers were conducted. The pathways were closely connected by some key targets, which were significantly reduced in the model group compared with those in control group, while ZZCD treated groups showed corrections after 3-week administration. The results revealed that the anti-depression efficacy of ZZCD might be associated with PKA-CREB-BDNF-TrkB-PSD-95 pathway influenced by metabolic changes, verifying the pathway annotation speculation. CONCLUSION: This study demonstrated that ZZCD had a positive treatment effect on CUMS depression model mice. Metabolomics results revealed the holistic and interconnected metabolic changes of ZZCD in CUMS mice. The metabolic pathway annotation suggested that the anti-depression mechanism of ZZCD might be related to signaling pathway in brain. PKA-CREB-BDNF-TrkB-PSD-95 signaling expression was a verification and complement to the metabolomics results.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Estresse Psicológico/tratamento farmacológico , Animais , Antidepressivos/isolamento & purificação , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Masculino , Medicina Tradicional Chinesa , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos
7.
J Pharm Biomed Anal ; 194: 113803, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33317912

RESUMO

There have been few comprehensive studies on the holistic chemical composition of Spatholobi Caulis (SC) and consequently, the information is lacking for the in-depth study of the major constituents. SC is a kind of widely used traditional Chinese medicine with its xylem and phloem alternately arranged in 3-10 rings, but the relationship of phloem ring number and the quality remains unclear. In this study, the characterization of the major constituents in SC was analyzed by ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-Triple TOF-MS/MS), and the content of 19 flavonoids in SC with different phloem ring numbers was simultaneously determined by ultra-fast liquid chromatography coupled with triple quadrupole-linear ion trap tandem mass spectrometry (UFLC-QTRAP-MS/MS). Correlation analysis was performed to evaluate the quality of SC with different phloem ring numbers according to the content of 19 flavonoids. Results showed that 50 constituents in SC were identified and the fragmentation pathways of different types of compounds were preliminarily deduced by the fragmentation behavior of the 50 constituents. In addition, the content of flavonoids increased with phloem ring number, which demonstrated that the content of flavonoids in SC was positively correlated with the number of phloem rings. Our research will contribute to the variety identification and quality evaluation of SC, and provide a scientific basis for evaluating the quality of medicinal materials based on its appearance and characteristics.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Medicina Tradicional Chinesa
8.
J Pharm Biomed Anal ; 175: 112762, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31336286

RESUMO

As a triterpene saponin, pedunculoside is one of the most abundant, representative and active components in plants of genus Ilex (Aquifoliaceae). Pedunculoside has been used to treat myocardial ischemia, ameliorate hyperlipidemia and prevent liver injury. In this paper, a systemic in vitro liver microsomes / S9 and intestinal bacteria incubation, and in vivo animal experiment were performed, using LC-Q-TOF/MS analysis and a three-step data processing protocol. As a result, Bifidobacterium adolescentis and Bifidobacterium breve were identified to potentially metabolize pedunculoside among the intestinal bacteria tested. A total of 11 metabolites were found and tentatively identified, with 6 in both microsomal and bacterial incubation systems, and 9 after rats orally administered with pedunculoside. The metabolites detected involving both phase I and phase II metabolism, mainly through deglycosylation (hydrolyzation), dehydrogenation, hydroxylation and conjugation, and some of them underwent more than one-step metabolic reactions. Most of the metabolites have not been reported before. In vitro, liver microsome and intestinal bacteria prefer to metabolize pedunculoside in totally different ways; while in vivo, intestinal tract is the most important site for the metabolism and excretion of pedunculoside, where both intestinal bacteria and the host metabolic enzymes participate in its metabolism and disposition. The importance of intestinal bacteria should be highlighted. This study would contribute to a better understanding of pedunculoside metabolism, which can provide scientific evidence for its pharmacodynamic mechanism research and prove its clinical application.


Assuntos
Biotransformação/fisiologia , Glucose/análogos & derivados , Metaboloma/fisiologia , Triterpenos/química , Triterpenos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/metabolismo , Fezes/química , Glucose/química , Glucose/metabolismo , Hidroxilação/fisiologia , Ilex/metabolismo , Intestinos/fisiologia , Masculino , Microssomos Hepáticos/metabolismo , Ratos , Ratos Sprague-Dawley , Saponinas/química , Saponinas/metabolismo , Espectrometria de Massas em Tandem/métodos
9.
J Chromatogr Sci ; 56(10): 895-902, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982351

RESUMO

Leaves of Platycladus orientalis have been used as blood cooling and homeostatic therapy for thousands of years in traditional Chinese medicine. Emerging evidences of modern pharmacology have proved flavonoids as the key elements responsible for the efficacies. However, there has been no report on pharmacokinetic study of the flavonoids from Platycladus orientalis leaves extract. In this study, a sensitive and rapid ultra-flow liquid chromatography-tandem mass spectrometry method was established and validated for the simultaneous determination of amentoflavone, afzelin, hinokiflavone and quercitrin in rat plasma. The four flavonoids and luteolin (internal standard, IS) were recovered from rat plasma by methanol-ethyl acetate (v:v, 50:50). Chromatographic separation was performed on a C18 column with gradient elution. Our results showed that the recoveries from spiked control samples were more than 85% for all analytes and IS. The relative standard deviations of intra-day and inter-day precision were within 15% while the REs ranged from -6.6% to 8.0%. The validated method in this study was successfully applied to pharmacokinetic study in healthy rats after oral administration of P. orientalis leaves extract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/sangue , Flavonoides/farmacocinética , Traqueófitas/química , Animais , Estabilidade de Medicamentos , Flavonoides/química , Limite de Detecção , Modelos Lineares , Masculino , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Folhas de Planta/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
10.
J Mass Spectrom ; 53(2): 99-108, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29076598

RESUMO

As the most important marker component in Carthamus tinctorius L., hydroxysafflor yellow A (HSYA) was widely used in the prevention and treatment of cardiovascular diseases, due to its effect of improving blood supply, suppressing oxidative stress, and protecting against ischemia/reperfusion. In this paper, both an in vitro microsomal incubation and an in vivo animal experiment were conducted, along with an LC-Q-TOF/MS instrument and a 3-step protocol, to further explore the metabolism of HSYA. As a result, a total of 10 metabolites were searched and tentatively identified in plasma, urine, and feces after intravenous administration of HSYA to male rats, although no obvious biotransformation was found in the simulated rat liver microsomal system. The metabolites detected involving both phase I and phase II metabolism including dehydration, deglycosylation, methylation, and glucuronic acid conjugation. A few of the metabolites underwent more than one-step metabolic reactions, and some have not been reported before. The study would contribute to a further understanding of the metabolism of HSYA and provide scientific evidence for its pharmacodynamic mechanism research and clinical use.


Assuntos
Chalcona/análogos & derivados , Quinonas/metabolismo , Animais , Chalcona/sangue , Chalcona/metabolismo , Chalcona/urina , Cromatografia Líquida de Alta Pressão/métodos , Desidratação , Ácido Glucurônico/metabolismo , Masculino , Metilação , Microssomos Hepáticos/metabolismo , Quinonas/sangue , Quinonas/urina , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
Rapid Commun Mass Spectrom ; 30(19): 2145-54, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27470976

RESUMO

RATIONALE: As a herbal plant used in traditional Chinese medicine, Lamiophlomis rotata (Benth.) Kudo mainly displays its pharmacological effect by promoting blood circulation and hemostasis, dispelling wind, and acting as an analgesic. To identify the components contained in L. rotata, global detection and structural elucidation of both target and non-target components in the medicinal material was performed. METHODS: L. rotata was ultrasonically extracted with methanol. Separation and analysis were achieved using liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS). A three-step protocol which included (1) potential components screening, (2) collection of qualitative information, and (3) database searching and structural elucidation was used for target and non-target identification. RESULTS: A total of 42 components were tentatively identified, which included 12 iridoids (2 aglycones and 10 glucosides), 11 flavonoids (4 aglycones and 7 glucosides), and 13 phenylethanoid glycosides. Moreover, components of L. rotata extract belonging to the three main structural categories could be well separated in a 3D point plot according to their retention times, mass defects and degrees of unsaturation, facilitating the structural classification and identification in the subsequent studies. CONCLUSIONS: The results provide a reasonable picture of the components contained in L. rotata extract and promote the further pharmacodynamic and/or pharmacokinetic characterization of this medical material, meanwhile demonstrating the utility of a universal methodology for the systematical study of herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Lamiaceae/química , Espectrometria de Massas/métodos , Flavonoides/química , Glucosídeos/química , Iridoides/química , Plantas Medicinais/química
12.
J Sep Sci ; 39(11): 2068-78, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27062005

RESUMO

Flavonoids, including flavones, isoflavones, flavanones, chalcones, and isoflavans, have long been recognized as the main active ingredients in licorice. A method combining liquid chromatography with photodiode array detection and quadrupole time-of-flight mass spectrometry was developed to characterize components in three Glycyrrhiza species, and to expound the characteristic fragmentation behaviors in the positive ion mode. Based on the fragmentation patterns of reference compounds, a total of 39 compounds, including 37 flavonoid aglycones and two coumestans, were identified or tentatively identified. Besides, some common features, such as H2 O, CO, and CH2 O2 losses, together with retro-Diels-Alder fragmentation, were observed in these compounds. Furthermore, diagnostic fragmentations of C-ring cleavages and UV absorption on the skeleton groups were observed to structurally characterize flavonoid aglycones. In addition, typical losses of different substituent groups were detected: Neutral losses of 56 (C4 H8 ) and 68 Da (C5 H8 ) were yielded from a prenyl chain; neutral losses of 42 (C3 H6 ), 54 (C4 H6 ), and 70 Da (C4 H6 O) were generated by a pyran ring. Particularly, neutral losses of 18 (H2 O), 16 (CH4 ), 112 (C8 H16 ), and 98 Da (C7 H14 ) predicted a hydroxyl, a methoxyl, double prenyl chains, and a prenyl chain with a pyran ring, respectively.


Assuntos
Flavonoides/análise , Glicosídeos/análise , Glycyrrhiza/química , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Especificidade da Espécie , Fatores de Tempo
13.
J Ethnopharmacol ; 184: 187-95, 2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-26965366

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Annona squamosa Linn (Annonaceae) is a commonly used and effective traditional Chinese medicine (TCM) especially in the South China. The seeds of Annona squamosa Linn (SAS) have been used as a folk remedy to treat "malignant sores" (cancer) in South of China, but they also have high toxicity on human body. AIM OF THE STUDY: To discover the potential biomarkers in the mice caused by SAS. MATERIALS AND METHODS: We made metabonomics studies on the toxicity of SAS by ultraperformance liquid-chromatography high-definition mass spectrometry coupled with pattern recognition approach and metabolic pathways analysis. RESULTS: The significant difference in metabolic profiles and changes of metabolite biomarkers between the Control group and SAS group were well observed. 11 positive ions and 9 negative ions (P<0.05) were indicated based on UFLC-QTOF-HDMS. The metabolic pathways of SAS group are discussed according to the identified endogenous metabolites, and eight metabolic pathways are identified using Kyoto Encyclopedia of Genes and Genomes (KEGG). CONCLUSIONS: The present study demonstrates that metabonomics analysis could greatly facilitate and provide useful information for the further comprehensive understanding of the pharmacological activity and potential toxicity of SAS in the progress of them being designed to a new anti-tumor medicine.


Assuntos
Annona , Metaboloma/efeitos dos fármacos , Extratos Vegetais/toxicidade , Animais , Biomarcadores/urina , Cromatografia Líquida/métodos , Feminino , Fígado/efeitos dos fármacos , Fígado/patologia , Metabolômica , Camundongos Endogâmicos ICR , Reconhecimento Automatizado de Padrão , Sementes , Espectrometria de Massas por Ionização por Electrospray
14.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1012-1013: 124-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26827279

RESUMO

The dried flower of Carthamus tinctorius L. (honghua) is a widely used traditional Chinese medicine in clinics to treat coronary heart disease, hypertension, and cerebrovascular disease due to its functions of ameliorating circulation and removing blood stasis. Hydroxysafflor yellow A (HSYA) is an active marker component of honghua. In this paper, ultra-flow liquid chromatography coupled with quadrupole-time-of-flight mass-spectrometry (UFLC-Q-TOF/MS) was established and successfully applied to the detection and identification of the metabolites in bile, urine, plasma and feces samples of normal and model rats with orally administrated HSYA. A total of 8 metabolites were observed in normal rats, while 7 metabolites were detected in model rats. The distribution of metabolites in the plasma, bile, urine and feces of normal and model rats had obvious differences. The major in vivo metabolic pathways for HSYA included hydroxylation, hydroxylation+methylation, acetylation and glucuronidation, and there were also dehydration, hydrogenation, hydration, and hydroxylation+glucuronidation. All of these metabolites were reported for the first time, and these results are valuable and important for the understanding of the metabolic process and therapeutic mechanism of HSYA and some other pigments in honghua.


Assuntos
Bile/química , Chalcona/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Fezes/química , Quinonas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Administração Oral , Animais , Carthamus tinctorius/metabolismo , Chalcona/análise , Chalcona/química , Chalcona/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Feminino , Doenças Hematológicas/metabolismo , Quinonas/química , Quinonas/metabolismo , Ratos , Ratos Sprague-Dawley
15.
Artigo em Inglês | MEDLINE | ID: mdl-26409263

RESUMO

A sensitive ultrafast liquid chromatography coupled with triple quadrupole mass spectrometric (UFLC-MS/MS) method for the quantification of anhydrosafflor yellow B (AHSYB), a major active water-soluble pigment from Carthamus tinctorius, in rat plasma has been developed and validated. Sample preparation was achieved by protein precipitation of plasma with four volumes of methanol. Rutin was used as the internal standard (IS). The analytes were separated using a C18 column with an 8min gradient elution, followed by mass spectrometric detection using negative electrospray ionization (ESI(-)) in multiple reaction monitoring (MRM) mode. The method was linear in the concentration range of 25-10,000ng/mL for AHSYB. Intra-day and inter-day precision variation was less than 6.5%. The relative error of accuracy was within ±9.4%. The mean recovery of AHSYB was higher than 70.9%. The established method was successfully applied to the pharmacokinetic study after intravenous (2.5mg/kg) and oral (30mg/kg) dosing of AHSYB in normal rats. And the pharmacokinetic properties of AHSYB in rats with acute blood stasis and the differences between normal and acute blood stasis syndrome rats were also investigated. The results showed that the compound was poorly absorbed (∼0.3%) and the AUC0-t, AUC0-∞ and F were all significantly lower (P<0.05) in acute blood stasis syndrome rats, suggesting that disease condition may alter the body metabolism by enhancing metabolite enzyme activity.


Assuntos
Carthamus tinctorius/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Monossacarídeos/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Estabilidade de Medicamentos , Medicamentos de Ervas Chinesas/farmacocinética , Glicosídeos , Masculino , Monossacarídeos/farmacocinética , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
16.
J Pharm Biomed Anal ; 94: 1-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24531004

RESUMO

Peperomia dindygulensis, with secolignans (SLs) as major bioactive constituents, is a commonly used traditional folk medicine in mainland China for treatment of stomach, liver, mammary, and esophageal cancers. However, to date, there is no method available for the qualitative and quantitative analyses of SLs in this medicinal plant. The purpose of this study was to establish a sensitive, selective, and reproducible method for rapidly profiling, identifying, and determining SLs in the whole plant of P. dindygulensis. Ultra high-performance liquid chromatography (UHPLC) coupled with ultraviolet detector (UV) and quadrupole tandem time-of-flight mass spectrometry (Q-TOF-MS) were used for this analyses. The fragmentation behaviors of different types of SLs were described. A total of thirteen SLs, including two new derivatives, were identified or tentatively characterized in P. dindygulensis samples. In addition, seven major SLs in herbal samples from different regions in China were successfully determined. The method developed in this study is suitable for the qualitative and quantitative analyses of SLs in P. dindygulensis, and may be applicable for determining or identifying SLs from other Pepermia genus plants.


Assuntos
Peperomia/química , Plantas Medicinais/química , China , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/química , Espectrofotometria Ultravioleta/métodos , Espectrometria de Massas em Tandem/métodos
17.
Artigo em Inglês | MEDLINE | ID: mdl-24295907

RESUMO

A rapid and sensitive ultra fast performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous determination of five bioactive secolignans in Peperomia dindygulensis extract, including peperomin A, peperomin B, peperomin C, 4″-hydroxypeperomin B and 4″-hydroxypeperomin C in rat plasma. Arctigenin was used as the internal standard. The separation was performed on an Innovation™ Polar-RP C18 column by a gradient elution within a runtime of 7min. The mobile phase consisted of A (methanol) and B (0.1% formic acid in water) at a flow rate of 0.4mL/min. The detection was accomplished by using positive ion TurboIonSpray ionization in multiple reaction monitoring mode. The method was linear for all analytes over investigated range with all correlation coefficients greater than 0.9972. The lower limits of quantification were 1.1ng/mL for peperomin A, 1.24ng/mL for peperomin B, 1.02ng/mL for peperomin C, 1.91ng/mL for 4″-hydroxypeperomin B and 1.27ng/mL for 4″-hydroxypeperomin C. The intra- and inter-day precision (RSD%) was within 15% and the accuracy (RE%) ranged from -11.7% to 10.3%. This simple and sensitive method was fully validated and successfully applied to the pharmacokinetic study of peperomin A, peperomin B, peperomin C, 4″-hydroxypeperomin B and 4″-hydroxypeperomin C in rat plasma after oral administration of P. dindygulensis extract.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lignanas/sangue , Peperomia/química , Extratos Vegetais/administração & dosagem , Espectrometria de Massas em Tandem/métodos , Administração Oral , Animais , Estabilidade de Medicamentos , Lignanas/química , Lignanas/farmacocinética , Masculino , Extratos Vegetais/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Zhongguo Zhong Yao Za Zhi ; 38(12): 1929-33, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-24066586

RESUMO

To establish a fingerprint spectrum for Atractylodis Macrocephalae Rhizoma stir-fried with wheat bran based on UFLC/Q-TOF-MS, and make a principal component analysis (PCA) with Markview software, in order to compare the changes of components between raw and processed Atractylodis Macrocephalae Rhizoma with raw wheat bran as the blank. The results showed that the changed in components raw Atractylodis Macrocephalae Rhizoma and Atractylodis Macrocephalae Rhizoma stir-fried with wheat bran were apparently observed by PCA. Six compounds were identified to have significant changes in mass fraction before and after being stir-fried, namely atractylenolide-I, atractylenolide-II, atractylenolide-III, atractylentrid, atractylon and an unknown compound. Among them, atractylenolide-I and atractylenolide-II generated from dehydration and dehydrogenation of atractylenolide-III may be the material base of Atractylodis Macrocephalae Rhizoma stir-fried with wheat bran for strengthening spleen.


Assuntos
Atractylodes/química , Cromatografia Líquida/métodos , Fibras na Dieta , Lactonas/análise , Espectrometria de Massas , Análise de Componente Principal , Sesquiterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA