Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Res ; 236: 119946, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084577

RESUMO

Although nutrient reduction has been used for lake eutrophication mitigation worldwide, the use of this practice alone has been shown to be less effective in combatting cyanobacterial blooms, primarily because of climate change. In addition, quantifying the climate change contribution to cyanobacterial blooms is difficult, further complicating efforts to set nutrient reduction goals for mitigating blooms in freshwater lakes. This study employed a continuous variable Bayesian modeling framework to develop a model to predict spring cyanobacterial bloom areas and frequencies (the responses) using nutrient levels and climatic factors as predictors. Our results suggested that both spring climatic factors (e.g., increasing temperature and decreasing wind speed) and nutrients (e.g., total phosphorus) played vital roles in spring blooms in Lake Taihu, with climatic factors being the primary drivers for both bloom areas and frequencies. Climate change in spring had a 90% probability of increasing the bloom area from 35 km2 to 180 km2 during our study period, while nutrient reduction limited the bloom area to 170 km2, which helped mitigate expansion of cyanobacterial blooms. For lake management, to ensure a 90% probability of the mean spring bloom areas remaining under 154 km2 (the 75th percentile of the bloom areas in spring), the total phosphorus should be maintained below 0.073 mg·L-1 under current climatic conditions, which is a 46.3% reduction from the current level. Our modeling approach is an effective method for deriving dynamic nutrient thresholds for lake management under different climatic scenarios and management goals.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Mudança Climática , Teorema de Bayes , Cianobactérias/fisiologia , Eutrofização , Nutrientes , Fósforo/análise , China
2.
Sci Total Environ ; 834: 155303, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447191

RESUMO

Biodiversity-ecosystem functioning relationships under multiple pressures have recently been the subject of broad studies. For the key primary producer in aquatic ecosystems, phytoplankton, several studies have focused on trait-based functional diversity (FD) and the related functioning (e.g., resource use efficiency, RUE), and their linkages. However, investigations of the effects of environmental factors at different levels (e.g., land use, lake morphometry, climate and nutrients) on FD and RUE are sparse. We developed a data-driven-model framework to simultaneously elucidate the effects of multiple drivers on FD (functional diversity based on dendrograms, FDc and functional richness, FRic) and RUE (of nitrogen and phosphorus) of phytoplankton based on data from 68 Yunnan-Guizhou Plateau lakes, Southwest China. We found that the concentration of total phosphorus, which is mainly affected by land-use intensity and influenced by water depth, was the primary (positive) driver of changes in both FDc and FRic, while RUE was mainly explained by phytoplankton FD (i.e., FRic). These results indicate that water depth and land-use intensity influence indirectly phytoplankton FD and further regulate RUE. Moreover, nonlinear correlations of RUE with FRic were found, which may be caused by interspecific competition and niche differentiation of the phytoplankton community related to nutrient levels. Our finding may help managers to set trade-off targets between FD and RUE in lake ecosystems except for extremely polluted ones, in which the thresholds derived from the Bayesian network, of total phosphorus, total nitrogen and land-use intensity were approximately 0.04 mg/L, 0.50 mg/L and 244 (unitless), respectively. The probability of meeting the RUE objectives was lower in shallow lakes than in deep lakes, but for FRic the opposite was observed.


Assuntos
Lagos , Fitoplâncton , Teorema de Bayes , China , Ecossistema , Nitrogênio/análise , Fósforo/análise , Água
3.
Sci Total Environ ; 777: 146052, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-33677307

RESUMO

Harmful algal blooms caused by cyanobacteria have been increasing in frequency worldwide. However, the main environmental drivers of this change are often difficult to identify because of the effects of the interaction between eutrophication and climate change. Recently, filamentous N2-fixing cyanobacteria and non-diazotrophic Microcystis have been observed to be co-existing and undergoing succession in some eutrophic lakes. However, the succession patterns of dominant cyanobacteria and the factors driving this in mesotrophic lakes are not well understood. We hypothesized that the changes in cyanobacterial assemblages in mesotrophic lakes could result in a relatively high risks of toxic blooms, and that these changes are associated with the global climatic changes. We tested these hypotheses using data from the subtropical mesotrophic Lake Erhai. We found that the high spatiotemporal variability in the cyanobacterial community, and the increase in biomass were driven primarily by the growth of bloom-forming cyanobacterial taxa. Species-specific biomasses were related to a different environmental stressor; increases in dissolved organic carbon (DOC) concentrations were statistically associated with an increase of Microcystis biomass, whereas increases in surface water temperature favored higher biomass of Pseudanabaena at low transparency and high concentration of phosphorus. In addition, low nitrogen- to- phosphorus ratios were identified as potential determinants of the abundance of N2-fixing Dolichospermum. Furthermore, changes in the concentration of DOC, total nitrogen, pH and water transparency levels were found to affect the composition of Microcystis morphotypes and genotypes mostly. This study highlights that the toxic to non-toxic Microcystis ratio might increase with the water darkening and browning (which occurs in many subtropical plateau lakes). Lake management strategies, therefore, need to consider the toxicity of cyanobacterial assemblages in mesotrophic lakes over the intensity of the cyanobacterial blooms.


Assuntos
Cianobactérias , Microcystis , China , Eutrofização , Proliferação Nociva de Algas , Lagos , Fósforo/análise
4.
Harmful Algae ; 84: 84-94, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31128816

RESUMO

Non-diazotrophic Microcystis and filamentous N2-fixing Aphanizomenon and Dolichospermum (formerly Anabaena) co-occur or successively dominate freshwaters globally. Previous studies indicate that dual nitrogen (N) and phosphorus (P) reduction is needed to control cyanobacterial blooms; however, N limitation may cause replacement of non-N2-fixing by N2-fixing taxa. To evaluate potentially counterproductive scenarios, the effects of temperature, nutrients, and zooplankton on the spatio-temporal variations of cyanobacteria were investigated in three large, shallow eutrophic lakes in China. The results illustrate that the community composition of cyanobacteria is primarily driven by physical factors and the zooplankton community, and their interactions. Niche differentiation between Microcystis and two N2-fixing taxa in Lake Taihu and Lake Chaohu was observed, whereas small temperature fluctuations in Lake Dianchi supported co-dominance. Through structural equation modelling, predictor variables were aggregated into 'composites' representing their combined effects on species-specific biomass. The model results showed that Microcystis biomass was affected by water temperature and P concentrations across the studied lakes. The biomass of two filamentous taxa, by contrast, exhibited lake-specific responses. Understanding of driving forces of the succession and competition among bloom-forming cyanobacteria will help to guide lake restoration in the context of climate warming and N:P stoichiometry imbalances.


Assuntos
Cianobactérias , Microcystis , China , Lagos , Fósforo
5.
Int J Environ Res Public Health ; 11(5): 5155-69, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24830449

RESUMO

The spatio-temporal distribution of environmental factors, chlorophyll-a (Chl-a), and microcystins (MCs) in a shallow lake, Lake Taihu (China), were investigated from 2009 to 2011 on a monthly basis at nine sampling stations. The annual mean concentration ranges of total nitrogen (TN), total phosphorus (TP), Chl-a, MC-LR and MC-RR were 0.17-10.53 mg/L, 0.027-0.581 mg/L, 0.10-129.75 µg/L, 0.013-2.019 µg/L and 0.002-0.794 µg/L, respectively. The average TN, ammonium (NH4(+)) and TP concentrations in Meiliang Bay decreased from 3.54 to 2.26 mg/L, 0.63 to 0.31 mg/L and 0.150 to 0.124 mg/L, respectively, when compared with values from 2006-2008, indicating that water quality has improved in severe cyanobacterial bloom areas in recent years. Additionally, the distribution of MCs was northern lake areas > western lake areas > central lake areas > macrophyte-dominated areas. Correlation analysis revealed that nutrients were the most important variable accounting for the variation of extracellular MC-LR concentration in heavy cyanobacterial bloom areas of Lake Taihu. During the study period, the maximum MCs concentration reached 2.75 ± 0.27 µg/L in the bloom period in the northern lake areas, which is more than two times the safety limit of 1 µg/L MCs required for drinking water. However, microcystins decreased gradually as the water quality improved from 2009 to 2011, indicating that the risk of MCs exposure was slightly decreased in Lake Taihu.


Assuntos
Clorofila/análise , Monitoramento Ambiental , Lagos/análise , Microcistinas/análise , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , China , Clorofila A , Cromatografia Líquida de Alta Pressão , Estações do Ano , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA