Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Oncol ; 41(3): 66, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281254

RESUMO

Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Piroptose , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Gasderminas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Apoptose , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Neoplasias/metabolismo
2.
Int J Oncol ; 55(6): 1397, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545403

RESUMO

Subsequently to the publication of this article, the authors have realized that the order of the corresponding authors in the author list should have been reversed: Wenshu Chai was listed as the penultimate author on the paper, whereas Xianbao Shi should have been featured before Wenshu Chai. Therefore, the authors and affiliations for this paper should have appeared as follows: LINA SHAN1, MINJIE ZHAO1, YA LU1, HONGJUAN NING1, SHUMAN YANG2, YONGGUI SONG3, XIANBAO SHI1 and WENSHU CHAI1 1Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001; 2School of Public Health, Jilin University, Changchun, Jilin 130021; 3School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China Correspondence to: Professor Xianbao Shi or Professor Wenshu Cai, Department of Respiratory, The First Affiliated Hospital of Jinzhou Medical University, 5 Renmin Street, Guta, Jinzhou, Liaoning 121001, P.R. China The authors regret that this error was not corrected prior to the publication of the above article, and apologize to the readership for any inconvenience caused. [the original article was published in International Journal of Oncology 55: 257­266, 2019; DOI: 10.3892/ijo.2019.4805].

3.
Life Sci ; 234: 116770, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31421085

RESUMO

Aim Licoricidin has multiple pharmacological activities. The present study was designed to investigate the permeability and pharmacokinetic behavior of licoricidin using in vitro models. MATERIAL AND METHODS: First, human liver microsomes and recombinant human supersomes were used to investigate the interactions between metabolic enzymes and licoricidin. In addition, rat, minipig, rabbit, dog, monkey, and human liver microsomes were used to determine metabolic differences among species. The parallel artificial membrane permeability assay (PAMPA) was used to explore licoricidin permeability behavior. KEY FINDINGS: At 100 µM, licoricidin strongly inhibited CYP2C9, CYP2C19, CYP3A4, UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15, and UGT2B17. Licoricidin metabolism exhibited considerable differences among species; dog, pig, and rat liver microsomes showed higher metabolic capacity than the other species. Seven licoricidin metabolites were identified by liquid chromatography-tandem mass spectrometry, and hydration and hydroxylation were the major metabolic pathways. The PAMPA permeability of licoricidin was moderate at both pH 4.0 and 7.4. SIGNIFICANCE: The present study will support further pharmacological or toxicological research on licoricidin.


Assuntos
Benzopiranos/metabolismo , Benzopiranos/farmacocinética , Animais , Inibidores das Enzimas do Citocromo P-450/metabolismo , Inibidores das Enzimas do Citocromo P-450/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Haplorrinos , Humanos , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Permeabilidade , Coelhos , Ratos , Especificidade da Espécie , Suínos , Porco Miniatura
4.
Artigo em Inglês | MEDLINE | ID: mdl-27698677

RESUMO

Morusin, the important active component of a traditional Chinese medicine, Morus alba L., has been shown to exhibit many vital pharmacological activities. In this study, six recombinant CYP450 supersomes and liver microsomes were used to perform metabolic studies. Chemical inhibition studies and screening assays with recombinant human cytochrome P450s were also used to characterize the CYP450 isoforms involved in morusin metabolism. The morusin metabolites identified varied greatly among different species. Eight metabolites of morusin were detected in the liver microsomes from pigs (PLMs), rats (RLMs), and monkeys (MLMs) by LC-MS/MS and six metabolites were detected in the liver microsomes from humans (HLMs), rabbits (RAMs), and dogs (DLMs). Four metabolites (M1, M2, M5, and M7) were found in all species and hydroxylation was the major metabolic transformation. CYP1A2, CYP2C9, CYP2D6, CYP2E1, CYP3A4, and CYP2C19 contributed differently to the metabolism of morusin. Compared to other CYP450 isoforms, CYP3A4 played the most significant role in the metabolism of morusin in human liver microsomes. These results are significant to better understand the metabolic behaviors of morusin among various species.

5.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1029-1030: 145-156, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27428458

RESUMO

Psoralidin has shown a variety of biological and pharmacological activities such as anti-tumor anti-oxidant, anti-bacterial, anti-depressant and anti-inflammatory activities. Herein, we reported the metabolism of psoralidin among different species and its inhibitory effect against UGTs and CYP450s. Liquid chromatography was used to investigate the inhibitory activity of psoralidin against ten different UGTs and eight distinct CYP450 isoforms. In addition, we characterized the CYP450 isoforms involved in the psoralidin metabolism on the basis of chemical inhibition studies and screening assays with recombinant human cytochrome P450s. In vitro metabolic profiles and metabolites of psoralidin from varying liver microsomes obtained from human (HLMs), monkey (MLMs), rat (RLMs), dog (DLMs), minipig (PLMs) and rabbit (RAMs) were determined by LC-MS/MS. In vivo pharmacokinetic profiles were investigated by injecting psoralidin (2mg/kg) into the tail vein of Wistar rats. Molecular modeling studies were carried out in order to assess the binding profile and recognition motif between psoralidin and the enzymes. Psoralidin showed potent and noncompetitive inhibition against UGT1A1, UGT1A7, CYP1A2 and CYP2C8 with IC50 values of 6.12, 0.38, 1.81, 0.28µM, respectively. The metabolism of psoraldin exhibited significant differences among humans, monkeys, dogs, minipigs, rabbits and rats; however, monkeys showed the highest similarity to humans. Furthermore, eleven metabolites were observed among these species and their structures were characterized by LC-MS/MS. CYP2C19 played a key role in the metabolism of psorslidin in human liver microsomes. These findings could be used to advance the understanding of psoralidin.


Assuntos
Benzofuranos/metabolismo , Cumarínicos/metabolismo , Inibidores das Enzimas do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Microssomos Hepáticos/metabolismo , Animais , Benzofuranos/administração & dosagem , Benzofuranos/sangue , Cromatografia Líquida , Cumarínicos/administração & dosagem , Cumarínicos/sangue , Cães , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacocinética , Glucuronosiltransferase/metabolismo , Haplorrinos , Humanos , Masculino , Simulação de Acoplamento Molecular , Coelhos , Ratos , Ratos Wistar , Especificidade da Espécie , Suínos , Porco Miniatura , Espectrometria de Massas em Tandem
6.
Artigo em Inglês | MEDLINE | ID: mdl-27034690

RESUMO

Cytochrome p450 (CYP450) enzymes are predominantly involved in Phase I metabolism of xenobiotics. In this study, the CYP450 isoforms involved in xanthotoxol metabolism were identified using recombinant CYP450s. In addition, the inhibitory effects of xanthotoxol on eight CYP450 isoforms and its pharmacokinetic parameters were determined using human liver microsomes. CYP1A2, one of CYP450s, played a key role in the metabolism of xanthotoxol compared to other CYP450s. Xanthotoxol showed stronger inhibition on CYP3A4 and CYP1A2 compared to other isoenzymes with the IC50 of 7.43 µM for CYP3A4 and 27.82 µM for CYP1A2. The values of inhibition kinetic parameters (Ki) were 21.15 µM and 2.22 µM for CYP1A2 and CYP3A4, respectively. The metabolism of xanthotoxol obeyed the typical monophasic Michaelis-Menten kinetics and V max, K m , and CLint values were calculated as 0.55 nmol·min(-1)·mg(-1), 8.46 µM, and 0.06 mL·min(-1)·mg(-1). In addition, the results of molecular docking showed that xanthotoxol was bound to CYP1A2 with hydrophobic and π-π bond and CYP3A4 with hydrogen and hydrophobic bond. We predicted the hepatic clearance (CL H ) and the CL H value was 15.91 mL·min(-1)·kg(-1) body weight. These data were significant for the application of xanthotoxol and xanthotoxol-containing herbs.

7.
Xenobiotica ; 46(5): 467-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26372370

RESUMO

1. The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes. 2. 100 µM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00 µM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11 µM, respectively. 3. Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83 µM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75 nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey > rat > minipig > dog > human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12 mL/min/kg body weight, respectively. 4. This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.


Assuntos
Inibidores das Enzimas do Citocromo P-450/química , Flavonoides/metabolismo , Glucuronosiltransferase/metabolismo , Animais , Peso Corporal , Cães , Interações Medicamentosas , Flavonoides/farmacocinética , Haplorrinos , Humanos , Concentração Inibidora 50 , Isoenzimas/metabolismo , Cinética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Preparações de Plantas/química , Ratos , Especificidade da Espécie , Suínos , Porco Miniatura
8.
Artigo em Inglês | MEDLINE | ID: mdl-24829606

RESUMO

Bavachalcone and corylin are two major bioactive compounds isolated from Psoralea corylifolia L., which has been widely used as traditional Chinese medicine for many years. As two antibiotic or anticancer drugs, bavachalcone and corylin are used in combination with other drugs; thus it is necessary to evaluate potential pharmacokinetic herb-drug interactions (HDI) of the two bioactive compounds. The aim of the present study was to compare the effects of liver UDP-glucuronosyltransferase (UGT) 1A1, UGT1A3, UGT1A7, UGT1A8, UGT 1A10, and UGT2B4 inhibited by bavachalcone and corylin. 4-Methylumbelliferone (4-MU) was used as a nonspecific "probe" substrate. Bavachalcone had stronger inhibition on UGT1A1 and UGT1A7 than corylin which did not inhibit UGT1A1, UGT1A3, UGT1A7, UGT1A8, UGT1A10, and UGT2B4. Data fitting using Dixon and Lineweaver-Burk plots demonstrated the noncompetitive inhibition of bavachalcone against UGT1A1 and UGT1A7-mediated 4-MU glucuronidation reaction. The values of inhibition kinetic parameters (Ki) were 5.41 µ M and 4.51 µ M for UGT1A1 and UGT1A7, respectively. The results of present study suggested that there was a possibility of UGT1A1 and UGT1A7 inhibition-based herb-drug interaction associated with bavachalcone and provided the basis for further in vivo studies to investigate the HDI potential between bavachalcone and UGT substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA