Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459068

RESUMO

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Assuntos
Fome , MicroRNAs , Animais , Camundongos , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Fome/fisiologia , Hipotálamo/metabolismo , MicroRNAs/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo
2.
J Clin Invest ; 132(19)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189793

RESUMO

The TET family of dioxygenases promote DNA demethylation by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). Hypothalamic agouti-related peptide-expressing (AGRP-expressing) neurons play an essential role in driving feeding, while also modulating nonfeeding behaviors. Besides AGRP, these neurons produce neuropeptide Y (NPY) and the neurotransmitter GABA, which act in concert to stimulate food intake and decrease energy expenditure. Notably, AGRP, NPY, and GABA can also elicit anxiolytic effects. Here, we report that in adult mouse AGRP neurons, CRISPR-mediated genetic ablation of Tet3, not previously known to be involved in central control of appetite and metabolism, induced hyperphagia, obesity, and diabetes, in addition to a reduction of stress-like behaviors. TET3 deficiency activated AGRP neurons, simultaneously upregulated the expression of Agrp, Npy, and the vesicular GABA transporter Slc32a1, and impeded leptin signaling. In particular, we uncovered a dynamic association of TET3 with the Agrp promoter in response to leptin signaling, which induced 5hmC modification that was associated with a chromatin-modifying complex leading to transcription inhibition, and this regulation occurred in both the mouse models and human cells. Our results unmasked TET3 as a critical central regulator of appetite and energy metabolism and revealed its unexpected dual role in the control of feeding and other complex behaviors through AGRP neurons.


Assuntos
Ansiolíticos , Dioxigenases , 5-Metilcitosina/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Ansiolíticos/farmacologia , Cromatina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Humanos , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
3.
Proc Natl Acad Sci U S A ; 119(16): e2200476119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412887

RESUMO

Augmentor α and ß (Augα and Augß) are newly discovered ligands of the receptor tyrosine kinases Alk and Ltk. Augα functions as a dimeric ligand that binds with high affinity and specificity to Alk and Ltk. However, a monomeric Augα fragment and monomeric Augß also bind to Alk and potently stimulate cellular responses. While previous studies demonstrated that oncogenic Alk mutants function as important drivers of a variety of human cancers, the physiological roles of Augα and Augß are poorly understood. Here, we investigate the physiological roles of Augα and Augß by exploring mice deficient in each or both Aug ligands. Analysis of mutant mice showed that both Augα single knockout and double knockout of Augα and Augß exhibit a similar thinness phenotype and resistance to diet-induced obesity. In the Augα-knockout mice, the leanness phenotype is coupled to increased physical activity. By contrast, Augß-knockout mice showed similar weight curves as the littermate controls. Experiments are presented demonstrating that Augα is robustly expressed and metabolically regulated in agouti-related peptide (AgRP) neurons, cells that control whole-body energy homeostasis in part via their projections to the paraventricular nucleus (PVN). Moreover, both Alk and melanocortin receptor-4 are expressed in discrete neuronal populations in the PVN and are regulated by projections containing Augα and AgRP, respectively, demonstrating that two distinct mechanisms that regulate pigmentation operate in the hypothalamus to control body weight. These experiments show that Alk-driven cancers were co-opted from a neuronal pathway in control of body weight, offering therapeutic opportunities for metabolic diseases and cancer.


Assuntos
Quinase do Linfoma Anaplásico , Peso Corporal , Citocinas , Hipotálamo , Animais , Camundongos , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Citocinas/genética , Citocinas/metabolismo , Hipotálamo/metabolismo , Ligantes , Redes e Vias Metabólicas , Camundongos Knockout , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Magreza/genética
4.
Diabetes ; 66(6): 1511-1520, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28292966

RESUMO

Glucose is the primary driver of hypothalamic proopiomelanocortin (POMC) neurons. We show that endothelial hypoxia-inducible factor 1α (HIF-1α) controls glucose uptake in the hypothalamus and that it is upregulated in conditions of undernourishment, during which POMC neuronal activity is decreased. Endothelium-specific knockdown of HIF-1α impairs the ability of POMC neurons to adapt to the changing metabolic environment in vivo, resulting in overeating after food deprivation in mice. The impaired functioning of POMC neurons was reversed ex vivo or by parenchymal glucose administration. These observations indicate an active role for endothelial cells in the central control of metabolism and suggest that central vascular impairments may cause metabolic disorders.


Assuntos
Endotélio/metabolismo , Glucose/metabolismo , Hipotálamo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Neurônios/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Comportamento Animal , Western Blotting , Metabolismo Energético , Privação de Alimentos , Técnicas de Silenciamento de Genes , Hiperfagia , Hipotálamo/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real
5.
Nat Med ; 17(9): 1121-7, 2011 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-21873987

RESUMO

Previous studies have proposed roles for hypothalamic reactive oxygen species (ROS) in the modulation of circuit activity of the melanocortin system. Here we show that suppression of ROS diminishes pro-opiomelanocortin (POMC) cell activation and promotes the activity of neuropeptide Y (NPY)- and agouti-related peptide (AgRP)-co-producing (NPY/AgRP) neurons and feeding, whereas ROS-activates POMC neurons and reduces feeding. The levels of ROS in POMC neurons were positively correlated with those of leptin in lean and ob/ob mice, a relationship that was diminished in diet-induced obese (DIO) mice. High-fat feeding resulted in proliferation of peroxisomes and elevated peroxisome proliferator-activated receptor γ (PPAR-γ) mRNA levels within the hypothalamus. The proliferation of peroxisomes in POMC neurons induced by the PPAR-γ agonist rosiglitazone decreased ROS levels and increased food intake in lean mice on high-fat diet. Conversely, the suppression of peroxisome proliferation by the PPAR antagonist GW9662 increased ROS concentrations and c-fos expression in POMC neurons. Also, it reversed high-fat feeding-triggered elevated NPY/AgRP and low POMC neuronal firing, and resulted in decreased feeding of DIO mice. Finally, central administration of ROS alone increased c-fos and phosphorylated signal transducer and activator of transcription 3 (pStat3) expression in POMC neurons and reduced feeding of DIO mice. These observations unmask a previously unknown hypothalamic cellular process associated with peroxisomes and ROS in the central regulation of energy metabolism in states of leptin resistance.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Leptina/metabolismo , Neurônios/metabolismo , PPAR gama/metabolismo , Peroxissomos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Relacionada com Agouti/metabolismo , Anilidas/farmacologia , Animais , Linhagem Celular , Ingestão de Alimentos/fisiologia , Eletrofisiologia , Proteínas de Fluorescência Verde , Hipotálamo/citologia , Camundongos , Camundongos Obesos , Neuropeptídeo Y/metabolismo , PPAR gama/antagonistas & inibidores , Reação em Cadeia da Polimerase , Pró-Opiomelanocortina/metabolismo
6.
Proc Natl Acad Sci U S A ; 107(33): 14875-80, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20679202

RESUMO

The neuronal circuits involved in the regulation of feeding behavior and energy expenditure are soft-wired, reflecting the relative activity of the postsynaptic neuronal system, including the anorexigenic proopiomelanocortin (POMC)-expressing cells of the arcuate nucleus. We analyzed the synaptic input organization of the melanocortin system in lean rats that were vulnerable (DIO) or resistant (DR) to diet-induced obesity. We found a distinct difference in the quantitative and qualitative synaptology of POMC cells between DIO and DR animals, with a significantly greater number of inhibitory inputs in the POMC neurons in DIO rats compared with DR rats. When exposed to a high-fat diet (HFD), the POMC cells of DIO animals lost synapses, whereas those of DR rats recruited connections. In both DIO rats and mice, the HFD-triggered loss of synapses on POMC neurons was associated with increased glial ensheathment of the POMC perikarya. The altered synaptic organization of HFD-fed animals promoted increased POMC tone and a decrease in the stimulatory connections onto the neighboring neuropeptide Y (NPY) cells. Exposure to HFD was associated with reactive gliosis, and this affected the structure of the blood-brain barrier such that the POMC and NPY cell bodies and dendrites became less accessible to blood vessels. Taken together, these data suggest that consumption of an HFD has a major impact on the cytoarchitecture of the arcuate nucleus in vulnerable subjects, with changes that might be irreversible due to reactive gliosis.


Assuntos
Dieta , Gliose/metabolismo , Melanocortinas/metabolismo , Obesidade/metabolismo , Sinapses/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/patologia , Núcleo Arqueado do Hipotálamo/fisiopatologia , Gorduras na Dieta/efeitos adversos , Feminino , Gliose/etiologia , Hipotálamo/metabolismo , Hipotálamo/patologia , Hipotálamo/fisiopatologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Neuropeptídeo Y/metabolismo , Obesidade/etiologia , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/fisiologia
7.
Cell ; 135(5): 813-24, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041747

RESUMO

N-acylphosphatidylethanolamines (NAPEs) are a relatively abundant group of plasma lipids of unknown physiological significance. Here, we show that NAPEs are secreted into circulation from the small intestine in response to ingested fat and that systemic administration of the most abundant circulating NAPE, at physiologic doses, decreases food intake in rats without causing conditioned taste aversion. Furthermore, (14)C-radiolabeled NAPE enters the brain and is particularly concentrated in the hypothalamus, and intracerebroventricular infusions of nanomolar amounts of NAPE reduce food intake, collectively suggesting that its effects may be mediated through direct interactions with the central nervous system. Finally, chronic NAPE infusion results in a reduction of both food intake and body weight, suggesting that NAPE and long-acting NAPE analogs may be novel therapeutic targets for the treatment of obesity.


Assuntos
Regulação do Apetite , Fosfatidiletanolaminas/fisiologia , Amidas , Animais , Peso Corporal , Gorduras na Dieta/metabolismo , Endocanabinoides , Etanolaminas , Hipotálamo/metabolismo , Intestino Delgado/metabolismo , Camundongos , Camundongos Obesos , Atividade Motora , Obesidade/metabolismo , Ácidos Palmíticos/metabolismo , Fosfatidiletanolaminas/sangue , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Espectrometria de Massas em Tandem
8.
Nature ; 454(7206): 846-51, 2008 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-18668043

RESUMO

The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Grelina/metabolismo , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Relacionada com Agouti/genética , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Canais Iônicos/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Neurônios/efeitos dos fármacos , Neuropeptídeo Y/genética , Fosforilação/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Proteína Desacopladora 2
9.
J Clin Invest ; 117(12): 4022-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18060037

RESUMO

Sleep is a natural process that preserves energy, facilitates development, and restores the nervous system in higher animals. Sleep loss resulting from physiological and pathological conditions exerts tremendous pressure on neuronal circuitry responsible for sleep-wake regulation. It is not yet clear how acute and chronic sleep loss modify neuronal activities and lead to adaptive changes in animals. Here, we show that acute and chronic prolonged wakefulness in mice induced by modafinil treatment produced long-term potentiation (LTP) of glutamatergic synapses on hypocretin/orexin neurons in the lateral hypothalamus, a well-established arousal/wake-promoting center. A similar potentiation of synaptic strength at glutamatergic synapses on hypocretin/orexin neurons was also seen when mice were sleep deprived for 4 hours by gentle handling. Blockade of dopamine D1 receptors attenuated prolonged wakefulness and synaptic plasticity in these neurons, suggesting that modafinil functions through activation of the dopamine system. Also, activation of the cAMP pathway was not able to further induce LTP at glutamatergic synapses in brain slices from mice treated with modafinil. These results indicate that synaptic plasticity due to prolonged wakefulness occurs in circuits responsible for arousal and may contribute to changes in the brain and body of animals experiencing sleep loss.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Plasticidade Neuronal , Neurônios/metabolismo , Neuropeptídeos , Privação do Sono/metabolismo , Sinapses/metabolismo , Vigília , Animais , Compostos Benzidrílicos/efeitos adversos , Compostos Benzidrílicos/farmacologia , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/farmacologia , AMP Cíclico/metabolismo , Dopamina/metabolismo , Feminino , Hipotálamo/metabolismo , Hipotálamo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Modafinila , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/patologia , Neuropeptídeos/metabolismo , Orexinas , Receptores de Dopamina D1/metabolismo , Privação do Sono/induzido quimicamente , Privação do Sono/patologia , Sinapses/patologia , Vigília/efeitos dos fármacos
10.
J Clin Invest ; 116(7): 1886-901, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16794735

RESUMO

Leptin and insulin have been identified as fuel sensors acting in part through their hypothalamic receptors to inhibit food intake and stimulate energy expenditure. As their intracellular signaling converges at the PI3K pathway, we directly addressed the role of phosphatidylinositol3,4,5-trisphosphate-mediated (PIP3-mediated) signals in hypothalamic proopiomelanocortin (POMC) neurons by inactivating the gene for the PIP3 phosphatase Pten specifically in this cell type. Here we show that POMC-specific disruption of Pten resulted in hyperphagia and sexually dimorphic diet-sensitive obesity. Although leptin potently stimulated Stat3 phosphorylation in POMC neurons of POMC cell-restricted Pten knockout (PPKO) mice, it failed to significantly inhibit food intake in vivo. POMC neurons of PPKO mice showed a marked hyperpolarization and a reduction in basal firing rate due to increased ATP-sensitive potassium (KATP) channel activity. Leptin was not able to elicit electrical activity in PPKO POMC neurons, but application of the PI3K inhibitor LY294002 and the KATP blocker tolbutamide restored electrical activity and leptin-evoked firing of POMC neurons in these mice. Moreover, icv administration of tolbutamide abolished hyperphagia in PPKO mice. These data indicate that PIP3-mediated signals are critical regulators of the melanocortin system via modulation of KATP channels.


Assuntos
Neurônios/metabolismo , Obesidade , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potássio/metabolismo , Pró-Opiomelanocortina/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Animais , Cromonas/metabolismo , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Hipoglicemiantes/farmacologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Knockout , Morfolinas/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Tolbutamida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA