Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 884: 163731, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142036

RESUMO

As the second largest reservoir in China, the Danjiangkou Reservoir (DJKR) serves as the water source of the Middle Route of the South-to-North Water Diversion Project of China (MRSNWDPC), i.e., the currently longest (1273 km) inter-basin water diversion project in the world, for more than eight years. The water quality status of the DJKR basin has been receiving worldwide attention because it is related to the health and safety of >100 million people and the integrity of an ecosystem covering >92,500 km2. In this study, basin-scale water quality sampling campaigns were conducted monthly at 47 monitoring sites in river systems of the DJKRB from the year 2020 to 2022, covering nine water quality indicators, i.e., water temperature (WT), pH, dissolved oxygen (DO), permanganate index (CODMn), five-day biochemical oxygen demand (BOD5), ammonia nitrogen (NH3-N), total phosphorus (TP), total nitrogen (TN), and fluoride (F-). The water quality index (WQI) and multivariate statistical techniques were introduced to comprehensively evaluate water quality status and understand the corresponding driving factors of water quality variations. An integrated risk assessment framework simultaneously considered intra and inter-regional factors using information theory-based and the SPA (Set-Pair Analysis) methods were proposed for basin-scale water quality management. The results showed that the water quality of the DJKR and its tributaries stably maintained a "good" status, with all the average WQIs >60 of river systems during the monitoring period. The spatial variations of all WQIs in the basin showed significantly different (Kruskal-Wallis tests, P < 0.01), while no seasonal differences were found. The increase in built-up land use and agricultural water consumption revealed the highest contributions (Mantel's r > 0.5, P < 0.05) to the rise of nutrient loadings of all river systems, showing the intensive anthropogenic activities can eclipse the power of natural processes on water quality variations to some extent. The risks of specific sub-basins that may cause water quality degradation on the MRSNWDPC were effectively quantified and identified into five classifications based on transfer entropy and the SPA methods. This study provides an informative risk assessment framework that was relatively easy to be applied by professionals and non-experts for basin-scale water quality management, thus providing a valuable and reliable reference for the administrative department to conduct effective pollution control in the future.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Humanos , Monitoramento Ambiental/métodos , Ecossistema , Teoria da Informação , Poluentes Químicos da Água/análise , China , Rios , Fósforo/análise , Medição de Risco , Nitrogênio/análise
2.
J Environ Manage ; 338: 117833, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37004483

RESUMO

Increased riverine nitrogen (N) concentrations due to human activities is one of the leading causes of water quality decline, worldwide. Therefore, quantitative information about the N exported from watershed to the river (TN exports) is essential for defining N pollution control practices. This paper evaluated the changes in net anthropogenic N inputs (NANI) and the N stored in land ecosystems (legacy N) in the Jianghan Plain (JHP) from 1990 to 2019 and their impacts on TN exports. Moreover, an empirical model was developed to estimate TN exports, trace its source, and predict its future variations in 2020-2035 under different scenarios. According to the results, NANI exhibited a rise-decrease-rise-decrease M-shaped trend, with N fertilizer application being the dominant driver for NANI change. In terms of the NANI components, non-point-source was the primary N input form (96%). Noteworthy is that the correlation between NANI and TN exports became weaker over time, and large differences in changing trends were observed after 2014. A likely cause for this abnormal trend was that the accumulation of N surplus in soil led to N saturation in agricultural areas. Legacy N was also an important source of TN exports. However, the contribution of legacy N has rarely been considered when defining N pollution control strategies. An empirical model, incorporating legacy N, agricultural irrigation water use, and cropland area ratio, was developed. Based on this model, legacy N contributed a large proportion (15-31%). Furthermore, the results of future predictions indicated that legacy N had a larger impact on future TN exports changes compared to other factors, and increased irrigation water would increase rather than decrease TN exports. Therefore, an integrated N management strategy considering the impact of NANI, legacy N, and irrigation water use is crucial to control N pollution in areas with intensive agriculture.


Assuntos
Nitrogênio , Poluentes Químicos da Água , Humanos , Nitrogênio/análise , Monitoramento Ambiental , Ecossistema , Qualidade da Água , Agricultura , Rios , China , Poluentes Químicos da Água/análise , Fósforo/análise
3.
Sci Total Environ ; 836: 155287, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35439512

RESUMO

The increase of phosphorus (P) input related to human activities is one of the main reasons for eutrophication. Notably, in areas with high population densities and intensive agricultural activities, eutrophication has occurred frequently in the Jianghan Plain, so quantitative evaluation of anthropogenic P input is of great significance for the formulation of P pollution control measures. This study estimated net anthropogenic P input (NAPI), riverine total P exports (TP exports), and the pool of P stored in the terrestrial system (legacy P reserves) at the county scale from 1990 to 2019 in the Jianghan Plain. The results showed that NAPI increased from 2645 kg·km-2·yr-1 in 1991 to 5812 kg·km-2·yr-1 in 2014, and then decreased to 4509 kg·km-2·yr-1 in 2019. Non-point sources were the main form of NAPI, of which 75-96% came from agricultural systems. Meanwhile, P fertilizer input was the largest source of NAPI. It is worth noting that the contribution of seed P input in some counties, such as Jiangling County, is relatively high, even exceeding that of net food/feed P input. The P fertilizer application and livestock density were the main drivers for NAPI change. Only 3% of NAPI was exported into rivers, so a large amount of legacy P accumulated in the terrestrial system. An empirical model incorporating NAPI components, cultivated land area ratio, and annual precipitation was established. Based on this model, the average contribution of annual NAPI and the sum of legacy P and natural background sources to TP exports were calculated to be 71% and 29%, respectively. So it is necessary to control P pollution by improving fertilizer use efficiency and enhancing manure management. The results provide a scientific basis for targeted solutions to the sources of P nutrient and its control measures in the middle reach of the Yangtze River.


Assuntos
Fósforo , Poluentes Químicos da Água , China , Monitoramento Ambiental , Fertilizantes/análise , Atividades Humanas , Humanos , Nitrogênio/análise , Fósforo/análise , Rios , Poluentes Químicos da Água/análise
4.
Water Res ; 178: 115781, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353610

RESUMO

The world's longest trans-basin water diversion project, the Middle-Route (MR) of the South-to-North Water Diversion Project of China (SNWDPC), has officially been in operation for over 5 years since December 2014. Its water quality status has always attracted special attention because it is related to the health and safety of more than 58 million people and the integrity of an ecosystem covering more than 155,000 km2. This study presented and analysed the spatio-temporal variations and trends of 16 water quality parameters, including pH, water temperature (WT), dissolved oxygen (DO), permanganate index (PI), five-day biochemical oxygen demand (BOD5), fecal coliform (F. coli), total phosphorus (TP), total nitrogen (TN), ammonia nitrogen (NH3-N), sulphate (SO42-), fluoride (F-), mercury (Hg), arsenic (As), selenium (Se), copper (Cu), and zinc (Zn), which were determined monthly from samples collected at 27 water quality monitoring stations in the MR of the SNWDPC from March 2016 to February 2019. The water quality index (WQI) was used to evaluate the seasonal and spatial water quality changes during the monitoring period, and a new WQImin model consisting of five crucial parameters, i.e., TP, F. coli, Hg, WT, and DO, was built by using stepwise multiple linear regression analysis. The results demonstrated that the water quality status of the MR of the SNWDPC has been steadily maintained at an "excellent" level during the monitoring period, with an overall average WQI value of 90.39 and twelve seasonal mean WQI values ranging from 87.67 to 91.82. The proposed WQImin model that uses the selected five key parameters and the weights of those parameters has exhibited excellent performance in the water quality assessment of the project, with the coefficient of determination (R2), Root Mean Square Error (RMSE), and Percentage Error (PE) values of 0.901, 2.21, 1.93%, respectively, showing that the proposed WQImin model is a useful and efficient tool to evaluate and manage the water quality. For the management department, the risk sources near certain stations with abnormally high values should be carefully inspected and strictly managed to maintain excellent water quality. The potential risks of algae proliferation in this project should be of concern in future research.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , China , Ecossistema , Monitoramento Ambiental , Fósforo , Rios , Água
5.
Artigo em Inglês | MEDLINE | ID: mdl-31238589

RESUMO

In this article, a data matrix of 20 indicators (6960 observations) was obtained from 29 water quality monitoring stations of the Middle Route (MR) of the South-to-North Water Diversion Project of China (SNWDPC). Multivariate statistical techniques including analysis of variance (ANOVA), correlation analysis (CA), and principal component analysis (PCA) were applied to understand and identify the interrelationships between the different indicators and the most contributive sources of anthropogenic and natural impacts on water quality. The water quality index (WQI) was used to assess the classification and variation of water quality. The distributions of the indicators revealed that six heavy-metal indicators including arsenic (As), mercury (Hg), cadmium (Cd), chromium (Cr), selenium (Se), and lead (Pb) were within the Class I standard, while the As, Pb, and Cd displayed spatial variation. Moreover, some physicochemical indicators such as dissolved oxygen, 5-day biochemical oxygen demand (as BOD5), and total phosphorus (TP) had spatio-temporal variability. The correlation analysis result demonstrated that As, Hg, Cd, Cr, Se, Pb, copper (Cu), and zinc (Zn) had high correlation coefficients. The PCA result extracted three principal components (PC) accounting for 82.67% of the total variance, while the first PC was indicative of the mixed sources of anthropogenic and natural contributions, the second and the third PCs were mainly controlled by human activities and natural sources, respectively. The calculation results of the WQI showed an excellent water quality of the MR of the SNWDPC where the values of the stations ranged from 10.49 to 17.93, while Hg was the key indicator to determine the WQI > 20 of six stations, which indicated that the Hg can be the main potential threat to water quality and human health in this project. The result suggests that special attention should be paid to the monitoring of Hg, and the investigation and supervision within the areas of high-density human activities in this project should be taken to control the impacts of urban and industrial production and risk sources on water quality.


Assuntos
Poluentes Químicos da Água/análise , Qualidade da Água , Arsênio/análise , China , Monitoramento Ambiental , Metais Pesados/análise , Oxigênio/análise , Fósforo/análise , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA