Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 182: 114180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37967787

RESUMO

The effect of heavy metal cadmium (Cd) on testicular function is recognized. However, the mechanism involved is not well-established. In the present study, we analyzed the testicular transcriptomic changes induced by acute Cd exposure of adult rats with and without supplementation of antioxidants selenium (Se) and/or coenzyme Q10 (CoQ). Cd significantly decreased serum testosterone and two steroidogenic proteins SCARB1 and STAR. RNA-Seq analyses of testicular RNAs revealed specific activation of oxidative stress-, inflammation-, MAPK- and NF-κB-related signaling molecules. In addition, Cd treatment down-regulated gene for I, III and IV complexes of mitochondrial electron transport chain and up-regulated genes for NADPH-oxidase, major cascade in ROS production. The decrease in steroidogenesis and increase in inflammation may result from oxidative stress since supplementation of Se and CoQ, but not with either alone, almost completely prevented these changes, including overall alterations in transcriptome. Cd exposure induced total of 1192 differentially expressed genes (DEGs), which was reduced to 29 without considering confounding factors associated with Se/CoQ, a 97.6% protection rate. In conclusion, Cd exposure inhibited Leydig cell steroidogenesis by down-regulating SCARB1 and STAR through increasing oxidative stress and inflammation, but Se plus CoQ synergistically prevented all the changes induced by the Cd exposure.


Assuntos
Cádmio , Selênio , Masculino , Ratos , Animais , Cádmio/toxicidade , Selenito de Sódio/farmacologia , Transcriptoma , Antioxidantes/farmacologia , Selênio/farmacologia , Estresse Oxidativo , Inflamação , Perfilação da Expressão Gênica
2.
Acta Pharm Sin B ; 13(2): 678-693, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873170

RESUMO

The NLRP3 inflammasome's core and most specific protein, NLRP3, has a variety of functions in inflammation-driven diseases. Costunolide (COS) is the major active ingredient of the traditional Chinese medicinal herb Saussurea lappa and has anti-inflammatory activity, but the principal mechanism and molecular target of COS remain unclear. Here, we show that COS covalently binds to cysteine 598 in NACHT domain of NLRP3, altering the ATPase activity and assembly of NLRP3 inflammasome. We declare COS's great anti-inflammasome efficacy in macrophages and disease models of gouty arthritis and ulcerative colitis via inhibiting NLRP3 inflammasome activation. We also reveal that the α-methylene-γ-butyrolactone motif in sesquiterpene lactone is the certain active group in inhibiting NLRP3 activation. Taken together, NLRP3 is identified as a direct target of COS for its anti-inflammasome activity. COS, especially the α-methylene-γ-butyrolactone motif in COS structure, might be used to design and produce novel NLRP3 inhibitors as a lead compound.

3.
Br J Pharmacol ; 180(12): 1634-1647, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36668704

RESUMO

BACKGROUND AND PURPOSE: The NLR family pyrin domain-containing 3 (NLRP3) inflammasome is activated in many inflammatory conditions. So far, no low MW compounds inhibiting NLRP3 have entered clinical use. Identification of naturally occurring NLRP3 inhibitors may be beneficial to the design and development of compounds targeting NLRP3. Alantolactone is a phytochemical from a traditional Chinese medicinal plant with anti-inflammatory activity, but its precise target remains unclear. EXPERIMENTAL APPROACH: A bank of phytochemicals was screened for inhibitors of NLRP3-driven production of IL-1ß in cultures of bone-marrow-derived macrophages from female C57BL/6 mice. Models of gouty arthritis and acute lung injury in male C57BL/6J mice were used to determine the in vivo effects of the most potent compound. KEY RESULTS: Among the 150 compounds screened in vitro, alantolactone exhibited the highest inhibitory activity against LPS + ATP-induced production of IL-1ß in macrophages, suppressing IL-1ß secretion, caspase-1 activation and pyroptosis. Alantolactone directly bound to the NACHT domain of NLRP3 to inhibit activation and assembly of NLRP3 inflammasomes. Molecular simulation analysis suggested that Arg335 in NLRP3 was a critical residue for alantolactone binding, leading to suppression of NLRP3-NEK7 interaction. In vivo studies confirmed significant alleviation by alantolactone of two NLRP3-driven inflammatory conditions, acute lung injury and gouty arthritis. CONCLUSION AND IMPLICATIONS: The phytochemical alantolactone inhibited activity of NLRP3 inflammasomes by directly targeting the NACHT domain of NLRP3. Alantolactone shows great potential in the treatment of NLRP3-driven diseases and could lead to the development of novel NLRP3 inhibitors.


Assuntos
Lesão Pulmonar Aguda , Artrite Gotosa , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia
4.
Cells ; 11(16)2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010654

RESUMO

The Potato virus Y (PVY) is responsible for huge economic losses for the potato industry worldwide and is the fifth most consequential plant virus globally. The main strategies for virus control are to limit aphid vectors, produce virus-free seed potatoes, and breed virus-resistant varieties. The breeding of PVY-resistant varieties is the safest and most effective method in terms of cost and environmental protection. Rychc, a gene that confers extreme resistance to PVY, is from S. chacoense, which is a wild diploid potato species that is widely used in many PVY-resistant breeding projects. In this study, Rychc was fine mapped and successfully cloned from S. chacoense accession 40-3. We demonstrated that Rychc encodes a TIR-NLR protein by stably transforming a diploid susceptible cultivar named AC142 and a tetraploid potato variety named E3. The Rychc conferred extreme resistance to PVYO, PVYN:O and PVYNTN in both of the genotypes. To investigate the genetic events occurring during the evolution of the Rychc locus, we sequenced 160 Rychc homologs from 13 S. chacoense genotypes. Based on the pattern of sequence identities, 160 Rychc homologs were divided into 11 families. In Family 11 including Rychc, we found evidence for Type I evolutionary patterns with frequent sequence exchanges, obscured orthologous relationships and high non-synonymous to synonymous substitutions (Ka/Ks), which is consistent with rapid diversification and positive selection in response to rapid changes in the PVY genomes. Furthermore, a functional marker named MG64-17 was developed in this study that indicates the phenotype with 100% accuracy and, therefore, can be used for marker-assisted selection in breeding programs that use S. chacoense as a breeding resource.


Assuntos
Afídeos , Vírus de Plantas , Potyvirus , Solanum tuberosum , Animais , Doenças das Plantas/genética , Potyvirus/genética , Solanum tuberosum/genética
5.
J Med Chem ; 64(18): 13841-13852, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34519507

RESUMO

Mitogen-activated protein kinase FgGpmk1 plays vital roles in the development and virulence of Fusarium graminearum (F. graminearum), the causative agent of Fusarium head blight (FHB). However, to date, the druggability of FgGpmk1 still needs verification, and small molecules targeting FgGpmk1 have never been reported. Here, we reported the discovery of a novel inhibitor 94 targeting FgGpmk1. First, a novel hit (compound 21) with an EC50 value of 13.01 µg·mL-1 against conidial germination of F. graminearum was identified through virtual screening. Then, guided by molecular modeling, compound 94 with an EC50 value of 3.46 µg·mL-1 was discovered, and it can inhibit the phosphorylation level of FgGpmk1 and influence the nuclear localization of its downstream FgSte12. Moreover, 94 can inhibit deoxynivalenol biosynthesis without any damage to the host. This study reported a group of FgGpmk1 inhibitors with a novel scaffold, which paves the way for the development of potent fungicides to FHB management.


Assuntos
Antifúngicos/farmacologia , Proteínas Fúngicas/antagonistas & inibidores , Fusarium/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Praguicidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Antifúngicos/síntese química , Antifúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Testes de Sensibilidade Microbiana , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Praguicidas/síntese química , Praguicidas/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirazóis/síntese química , Pirazóis/metabolismo , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Tricotecenos
6.
Biofactors ; 47(1): 80-92, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33233028

RESUMO

Accompanying with diabetes mellitus-induced osteoporosis (DM-OS), diabetic patients show poor peri-implant osteogenesis after implantation for dentition defect. Berberine (BBR), a candidate oral hypoglycemic agent, is a promising agent for treating DM-OS. In this study, BBR was applied on DM rats and high-glucose-cultured bone mesenchymal stem cells (BMSCs) to investigate its therapeutic mechanism on DM-OS, thus laying a theoretical basis for the future application of BBR in implant restoration. Phenotypes were assessed in the DM rats after 4 w of gavage with BBR. Furthermore, BMSCs were cultured with high glucose and BBR. Cell Counting Kit-8, 2',7'-dichlorofluorescin diacetate (H2 DCF-DA), quantitative real-time PCR (qRT-PCR), and western blot were performed to estimate the cell proliferation, oxidative stress, and osteogenic differentiation. Moreover, the DM rats treated with BBR and insulin receptor substrate-1 anti-sense oligonucleotide (IRS-1-ASO) underwent a 4-w implant-healing period and then micro computed tomography (Micro-CT) and histology were performed to verify the mechanism. Results showed that the 4-w administration of BBR markedly improved the glucose metabolism and bone metabolism in the DM rats. in vitro experiments revealed that BBR alleviated high-glucose-inhibited osteogenesis of the BMSCs by upregulating reactive oxygen species (ROS)-mediated IRS-1 signaling. Besides, injection of IRS-1-ASO abolished the BBR promotion of implant osseointegration in the DM rats. In conclusion, targeting ROS-mediated IRS-1 signaling, BBR acted as an efficient agent to advance osseointegration in DM, which indicated that BBR use is a good strategy for future implants restoration in diabetic patients.


Assuntos
Berberina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Proteínas Substratos do Receptor de Insulina/metabolismo , Osteogênese/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Berberina/farmacologia , Prótese Ancorada no Osso , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Food Funct ; 11(2): 1245-1257, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32052003

RESUMO

As the most common sleep disorder, insomnia seriously affects people's everyday lives. Phytochemicals have been shown to have excellent sleep-promoting effects. Therefore, this study was designed to investigate whether Rg5 and Rk1 extracted from ginseng had sleep-promoting effects and to explore their potential mechanisms. The results showed that Rg5 and Rk1 could significantly lessen the locomotor activity of mice and promote the sleep quality index, including increasing the amount of sleep in a pentobarbital sodium experiment with a threshold dose. In parallel, Rg5 and Rk1 could significantly shorten the sleep latency of mice and prolong the sleep time of mice. Furthermore, Rg5 and Rk1 augmented the GABA/Glu ratio, up-regulating the expression of the GABAA receptor and the GABAB receptor, whereas the GABAA receptor antagonist picrotoxin could antagonize the sleep quality of Rg5/Rk1. In addition, 5-HTP, the precursor of 5-HT, could enhance the sleep effect of Rg5 and Rk1 in mice, and both Rg5 and Rk1 could up-regulate the expression of 5-HT1A. These results were also confirmed by the detection of GABA and 5-HT in mouse cecum content. In conclusion, ginsenoside Rg5/Rk1 can exert sedative and hypnotic effects by affecting the GABA nervous system and the serotonin nervous system.


Assuntos
Panax , Óleos de Plantas/farmacologia , Animais , Modelos Animais de Doenças , Ginsenosídeos/farmacologia , Masculino , Fitoterapia , Óleos de Plantas/uso terapêutico , Ratos , Ratos Wistar , Receptores de GABA-A/efeitos dos fármacos , Transdução de Sinais , Sono/fisiologia , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Regulação para Cima
8.
Cancer Manag Res ; 11: 8407-8418, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31571996

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors in the world. It is the fourth most common cancer and has the second highest mortality rate globally. Metastasis is an important feature of gastric cancer and is the most common cause of death. Exploring the mechanism underlying the metastasis of gastric cancer and searching for new drug targets has become the focus of several studies. Traditional Chinese medicine may show promise for treatment of gastric cancer. In this review, we report the recent progress in research on the anti-metastasis activity of Chinese medicine, to facilitate clinical development of treatments for gastric cancer.

9.
Oncol Rep ; 36(2): 771-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27277418

RESUMO

Although modern radiotherapy offers excellent local control in the treatment of nasopharyngeal carcinoma (NPC), current therapeutic decisions remain burdensome due to the frequency of local recurrence and treatment failure at distant sites. One potential and promising strategy for the prevention or treatment of cancers is the use of bioactive components of plant origin, including dietary plant products. Herein, we studied one class of these bioactive compounds, grape seed proanthocyanidins (GSPs), and explored their effect on NPC CNE-2 cells, as well as the primary mechanism underlying this effect. Our results revealed that treatment of human NPC CNE-2 cells with GSPs reduced cell viability in a dose- and time-dependent manner, and moreover, markedly induced cell cycle arrest at the G2/M phase, leading to induction of apoptosis. In addition, we found that the underlying mechanism was associated with increased expression of the pro-apoptotic protein Bax, decreased expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL, upregulation of cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase (PRAP) protein, and the loss of mitochondrial membrane potential (MMP) (Δψm). Furthermore, GSPs upregulated the Bcl-2 homology 3 (BH3)-only proteins, Bim and Bad, in a concentration-dependent manner. Taken together, these data supported our hypothesis that, in human NPC CNE-2 cells, GSPs could induce apoptosis through the mitochondrial pathway and ultimately reduce cell viability. Collectively, the results discussed above provide substantive evidence for the potential of GSPs as an effective bioactive phytochemical for the treatment of NPC.


Assuntos
Apoptose/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Mitocôndrias/efeitos dos fármacos , Neoplasias Nasofaríngeas/tratamento farmacológico , Proantocianidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carcinoma , Caspase 3/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA