Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
NPJ Sci Food ; 8(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182603

RESUMO

Sweet taste receptors found in oral and extra oral tissues play important roles in the regulation of many physiological functions. Studies have shown that urine volume increases during the lifetime exposure to artificial sweeteners. However, the detailed molecular mechanism and the general effects of different artificial sweeteners exposure on urine volume remain unclear. In this study, we investigated the relationship between urinary excretion and the sweet taste receptor expression in mice after three artificial sweeteners exposure in a higher or lower concentration via animal behavioral studies, western blotting, and real-time quantitative PCR experiment in rodent model. Our results showed that high dose of acesulfame potassium and saccharin can significantly enhance the urine output and there was a positive correlation between K+ and urination volume. The acesulfame potassium administration assay of T1R3 knockout mice showed that artificial sweeteners may affect the urine output directly through the sweet taste signaling pathway. The expression of T1R3 encoding gene can be up-regulated specifically in bladder but not in kidney or other organs we tested. Through our study, the sweet taste receptors, distributing in many tissues as bladder, were indicated to function in the enhanced urine output. Different effects of long-term exposure to the three artificial sweeteners were shown and acesulfame potassium increased urine output even at a very low concentration.

2.
Carbohydr Polym ; 322: 121320, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839838

RESUMO

In this study, F-ZnO NPs were used as antibacterial agents, mussel bionic dopamine exerted its adhesive action to immobilize F-ZnO NPs on the pectin/CNF aerogel skeleton. Fruit and vegetable antimicrobial mats with safety, long duration of action and high efficiency were prepared and its potential application has been investigated. The results showed that a dopamine layer was deposited on the surface of the CNF, which promoted the tight adhesion of the F-ZnO NPs to the aerogel skeleton. The F-ZnO@D-CNF aerogel exhibited a slow release of zinc ions, with the first two days being 0.40 ± 0.16 and 1.01 ± 0.13 mg/mL. The aerogel was light, can stand on the petals without collapsing, has regular and uniform pore structure, good tensile/compressive properties and high antibacterial/anti-fungal properties. Strawberries packaged with F-ZnO@D-CNF aerogel exhibited an extended shelf life of 5 days. Additionally, the strawberries maintained a soluble solid content of 6.9 ± 0.82 % and a Vc content of 44.67 ± 3.51 mg/100 g. The weight loss, color and firmness were also notably superior to the other four groups. The final concentration of zinc ions in strawberries was 3.71 ± 0.28 µg/g, which is far below the recommended dietary intake.


Assuntos
Nanofibras , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Pectinas/farmacologia , Celulose , Dopamina , Zinco , Antibacterianos/farmacologia , Antibacterianos/química , Íons , Esqueleto
3.
Int J Biol Macromol ; 242(Pt 3): 125005, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217058

RESUMO

The structural characteristics of two water-extracted pectic polysaccharides from Fructus aurantii were investigated, and the impacts of their structures on the emulsifying stability were evaluated. FWP-60 (extracted by cold water and followed 60 % ethanol precipitation) and FHWP-50 (extracted by hot water and followed 50 % ethanol precipitation) were both high methyl-esterified pectins, which were composed of homogalacturonan (HG) and highly branched rhamnogalacturonan I (RG-I) regions. The weight-average molecular weight, methyl-esterification degree (DM) and HG/RG-I ratio of FWP-60 were 1200 kDa, 66.39 % and 4.45, respectively, which were 781 kDa, 79.10 % and 1.95 for FHWP-50. The methylation and NMR analysis of FWP-60 and FHWP-50 demonstrated that the main backbone consisted of different molar ratios of →4)-α-GalpA-(1 â†’ and →4)-α-GalpA-6-O-methyl-(1 →, and the side chains contained arabinan and galactan. Moreover, the emulsifying properties of FWP-60 and FHWP-50 were discussed. Compared with FHWP-50, FWP-60 had better emulsion stability. Overall, pectin had a linear HG domain and a small number of RG-I domain with short side chains to facilitate the stabilization of emulsions in Fructus aurantii. A comprehensive knowledge of the structure characteristic and emulsifying property would enable us to provide more information and theoretical guidance for the structure and emulsion preparation of Fructus aurantii pectic polysaccharides.


Assuntos
Pectinas , Água , Água/análise , Emulsões/análise , Pectinas/química , Polissacarídeos/química , Frutas/química
4.
Sci Rep ; 13(1): 6888, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106016

RESUMO

Radix Astragali is one of the most famous and frequently used health food supplements and herbal medicines. Among more than 227 components of Radix Astragali, Astragaloside IV (AG IV) is famous functional compound and is commonly used as a quality marker for Radix Astragali. However, the relatively low content of AG IV in Radix Astragali (< 0.04%, w/w) severely limits its application. The purpose of this study is to improve the biotransformation of AG IV and its bioaccessibility during in vitro digestion by Poria cocos solid fermenting Radix Astragali. The optimum fermentation conditions were as follows: Inoculation amount 8 mL; fermentation time 10 d; fermentation humidity 90%. Through fermentation, the content of AG IV was increased from 384.73 to 1986.49 µg/g by 5.16-fold. After in vitro digestion, the contents of genistin, calycosin, formononetin, AG IV, Astragaloside II (AG II) and total flavonoids in fermented Radix Astragali (FRA) of enteric phase II (ENTII) were 34.52 µg/g, 207.32 µg/g, 56.76 µg/g, 2331.46 µg/g, 788.31 µg/g, 3.37 mg/g, which were 2.08-fold, 2.51-fold, 1.05-fold, 8.62-fold, 3.22-fold and 1.50-fold higher than those of control, respectively. The Scanning electron microscopy (SEM) of FRA showed rough surface and porous structure. The DPPH and ABTS radical scavenging rate of FRA were higher than those of control. These results showed that the Poria cocos solid fermentation could increase the content of the AG IV in Radix Astragali and improve the bioaccessibility and antioxidant activity of Radix Astragali, which is providing new ideas for future development and utilization of Radix Astragali.


Assuntos
Medicamentos de Ervas Chinesas , Wolfiporia , Antioxidantes , Fermentação , Medicamentos de Ervas Chinesas/química , Biotransformação , Digestão , Cromatografia Líquida de Alta Pressão/métodos
5.
Curr Opin Clin Nutr Metab Care ; 26(4): 334-340, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057658

RESUMO

PURPOSE OF REVIEW: Resistant starch has received much attention recently as a healthy carbohydrate component of the diet. Resistant starch is not digested in the small intestine and can thus affect the gut microbiota of the host because of its fermentability. This review summarizes the interactions along the resistant starch-gut microbiota-host axis to help understand the health effects of resistant starch. RECENT FINDINGS: Recent studies indicate that resistant starch can be a helpful dietary component for special disease states like diabetes, metabolic syndrome, chronic kidney disease, constipation, and colitis. Its health effects are associated with modulation of the gut microbiota, and with gut microbes converting resistant starch into active and bioavailable metabolites that promote intestinal health. SUMMARY: The results from human clinical trials and studies in animal models indicate that supplementation of the diet with resistant starch in different metabolic diseases help remodel gut microbiota, especially increasing short-chain fatty acid (SCFA)-producing bacteria, and produce bioactive metabolites like SCFA, bile acids, and amino acids responsible for a variety of health effects. The gut microbiota and microbial metabolites probably mediate the effects of resistant starch on intestinal health.


Assuntos
Amido Resistente , Amido , Animais , Humanos , Amido Resistente/farmacologia , Amido/química , Amido/metabolismo , Amido/farmacologia , Dieta , Bactérias , Ácidos Graxos Voláteis/metabolismo , Suplementos Nutricionais
6.
Phytomedicine ; 114: 154784, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011417

RESUMO

BACKGROUND: The incidence of diseases related to the digestive tract is on the rise, with many types of complex etiologies. Dendrobium nobile Lindl. is a famous Traditional Chinese Medicine (TCM) rich in many bioactives proven to be beneficial in several health diseases related to inflammation and oxidative stress. PURPOSE: At present, despite the availability of various therapeutic clinical drugs used for the treatment of digestive tract diseases, resistance emergence and existence of several side effects warrant for the developing of novel drugs for improved effects on digestive tract diseases. METHODS: "Orchidaceae", "Dendrobium", "inflammation", "digestive tract", and "polysaccharide" were used as search terms to screen the literature. The therapeutic use of Dendrobium related to digestive tract diseases relative to known polysaccharides and other bioactive compounds were derived from online databases, including Web of Science, PubMed, Elsevier, Science Direct, and China National Knowledge Infrastructure, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS: To better capitalize upon Dendrobium for preventing and treating diseases related to digestive tract, this review summarizes bioactives in Dendrobium reported of potential in digestive tract diseases management and their underlying action mechanisms. Studies revealed that Dendrobium encompasses diverse classes including polysaccharides, phenolics, alkaloids, bibenzyls, coumarins, phenanthrene and steroids, with polysaccharide as the major class. Dendrobium exerts various health effects on a variety of disease related to the digestive tract. Action mechanisms involve antioxidant, anti-inflammatory, anti-apoptotic, antioxidant, anticancer, alongside the regulation of some key signaling pathways. CONCLUSION: Overall, Dendrobium appears as a promising TCM source of bioactives that has the potential to be further developed into nutraceuticals for digestive tract diseases compared to current drug treatments. This review highlights for Dendrobium potential effects with future perspectives for needed future research to maximize the use of bioactive compounds from Dendrobium for digestive tract disease treatment. A compile of Dendrobium bioactives is also presented alongside methods for their extraction and enrichment for potential incorporation in nutraceuticals.


Assuntos
Alcaloides , Antioxidantes , Extratos Vegetais/farmacologia , Medicina Tradicional Chinesa , Polissacarídeos/farmacologia
7.
Food Chem ; 401: 134079, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36115226

RESUMO

Due to the hydrophilic of the pectin material, the coating has poor barrier properties and a negative preservation effect on fresh fruits. In this study, citrus pectin coating with improved barrier and antioxidant properties was prepared by embedding with functional cellulose nanocrystals (CNC). It was assessed that cellulose nanocrystals grafted with p-coumaric acid (CNC-P) were uniformly dispersed in the pectin matrix to improve coating barrier properties. The addition of 8 % CNC-P to the pectin coating led to a decrease in water vapor and oxygen permeability from the coating by 12.6 % and 22.3 %, respectively. Additionally, the grafted p-coumaric acid (PA) introduced antioxidant properties to the cellulose nanocrystals. The fresh-cut fruits preservation assay showed that the coating containing CNC-P exerted a stronger inhibition effect of the browning process within 8 h than other coatings. This study suggests that pectin coating embedded with CNC-P has the potential to be used in food packaging.


Assuntos
Nanocompostos , Nanopartículas , Celulose/química , Antioxidantes , Vapor , Nanocompostos/química , Pectinas/química , Nanopartículas/química , Oxigênio
8.
Food Chem ; 404(Pt A): 134591, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36444016

RESUMO

Hyperlipidemia can directly cause metabolic diseases that seriously endanger disorder and metabolism and gut health. Tea polyphenol (TP) and epigallocatechin gallate (EGCG) was found to improve blood lipid levels and gut microbiota. This study aimed to investigate the effects of TP and EGCG on alleviating hyperlipidemia and liver fat accumulation with physiology, genomics, and metabolomics. Results showed that both TP and EGCG reduced body weight, and TP showed advantages in the decrease of serum cholesterol and triglycerides in hyperlipidemic rats induced by the high-fat diet. Moreover, EGCG may protect liver function via reducing the glycerophospholipids increased by high-fat diet intervention. TP remodeled the gut microbiota composition and enriched the abundance of beneficial bacteria (Bacteroides, Faecalibacterium, Parabacteroides, Akkermansia), and EGCG may improve gut health via promoting the acid-producing bacteria (such as Butyricimonas, Desulfovibrio). The above results provided new insights into the hypolipidemic mechanism of TP and EGCG.


Assuntos
Microbioma Gastrointestinal , Hiperlipidemias , Doenças Metabólicas , Ratos , Animais , Polifenóis , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/genética , Bacteroidetes , Fígado , Chá
9.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5246-5255, 2022 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-36472031

RESUMO

The present study quickly identified the ginsenosides in fresh Panax ginseng and specified the effects of different drying methods(50 ℃-drying, 80 ℃-drying, and-70 ℃ freeze-drying) on ginsenosides.Three P.ginseng products by different drying methods were prepared, and the UHPLC-Q-Exactive Orbitrap high-resolution liquid mass spectrometry(MS) technique was applied to perform gradient elution using water-acetonitrile as the mobile phase, and the data collected in the negative ion mode were analyzed using X Calibur 2.2.The results showed that 57 saponins were identified from fresh P.ginseng.As revealed by the comparison with the fresh P.ginseng, in terms of the loss of ginsenosides, the dried products were ranked as the dried product at 50 ℃, freeze-dried products at-70 ℃, and the dried product at 80 ℃ in the ascending order.This study elucidated the effects of different drying methods on the types and relative content of ginsenosides, which can provide references for the processing of P.ginseng in the producing areas.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos
10.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364395

RESUMO

Opuntia ficus-indica biological effects are attributed to several bioactive metabolites. However, these actions could be altered in vivo by biotransformation reactions mainly via gut microbiota. This study assessed gut microbiota effect on the biotransformation of O. ficus-indica metabolites both in vitro and ex vivo. Two-time aliquots (0.5 and 24 h) from the in vitro assay were harvested post incubation of O. ficus-indica methanol extract with microbial consortium, while untreated and treated samples with fecal bacterial culture from the ex vivo assay were prepared. Metabolites were analyzed using UHPLC-QTOF-MS, with flavonoid glycosides completely hydrolyzed in vitro at 24 h being converted to two major metabolites, 3-(4-hydroxyphenyl)propanoic acid and phloroglucinol, concurrent with an increase in the gallic acid level. In case of the ex vivo assay, detected flavonoid glycosides in untreated sample were completely absent from treated counterpart with few flavonoid aglycones and 3-(4-hydroxyphenyl)propanoic acid in parallel to an increase in piscidic acid. In both assays, fatty and organic acids were completely hydrolyzed being used as energy units for bacterial growth. Chemometric tools were employed revealing malic and (iso)citric acids as the main discriminating metabolites in vitro showing an increased abundance at 0.5 h, whereas in ex vivo assay, (iso)citric, aconitic and mesaconic acids showed an increase at untreated sample. Piscidic acid was a significant marker for the ex vivo treated sample. DPPH, ORAC and FRAP assays were further employed to determine whether these changes could be associated with changes in antioxidant activity, and all assays showed a decline in antioxidant potential post biotransformation.


Assuntos
Microbioma Gastrointestinal , Opuntia , Antioxidantes/farmacologia , Frutas , Extratos Vegetais/farmacologia , Flavonoides , Glicosídeos , Biotransformação
11.
Carbohydr Polym ; 298: 120023, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241256

RESUMO

Polysaccharides are important constituents in Dolichos lablab hull. Herein, pectin-glucuronoxylan complex from D. lablab hull designated as DLHP-3 (D. lablab hull polysaccharide,) was prepared by ion exchange and gel permeation chromatography, and further characterized by acid degradation and enzymatic hydrolysis, methylation combined with GC-MS, NMR and MALDI-TOF-MS analysis. Both of pectin and glucuronoxylan regions were found in DLHP-3. The glucuronoxylan region consisted of a →4)-ß-Xylp-(1→ backbone with branches of α-GlcpA-(1→ substituted at O-2 site, and the ratio of xylose to glucuronic acid was about 5:1. Acetyl groups were mainly attached to O-3 site of →2,4)-ß-Xylp-(1→ residues. The main chain of pectin region could be represented by →4)-α-GalpA-(1→4)-α-GalpA-(1→ and →2)-α-Rhap-(1→4)-α-GalpA-(1→ with partial methyl-esterification. The side chains were deduced to embrace arabinan and arabinogalactan linked to rhamnogalacturonan-I region. Pectin was probably covalently bound to glucuronoxylan. Our findings uncovered the molecular structure of pectin-glucuronoxylan complex from D. lablab hull.


Assuntos
Dolichos , Dolichos/metabolismo , Ácido Glucurônico , Pectinas/química , Polissacarídeos/química , Ramnogalacturonanos , Xilanos , Xilose
12.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094440

RESUMO

Consumption of food rich in dietary fibers (DFs) has been long recognized to exert an overall beneficial effect on human health. This review aims to provide a holistic overview on how IDFs impact human gut health either directly, or through modulation of the gut microbiome. Several databases were searched for collecting papers such as PubMed, Google Scholar, Web of Science, Scopus and Reaxys from 2000 till 2022. Firstly, an overview of the chemical structure of the various IDFs and the pathways employed by gut microbiota for their degradation is provided. The impact of IDFs on microbial community structure and pathogens colonization inside the human gut was discussed. Finally, the impact of IDFs on gut homeostasis and systemic effects at the cellular level, as well as the overall immunological benefits of IDFs consumption were analyzed. IDFs viz., cellulose, hemicellulose, resistant starch, and lignin found enriched in food are discussed for these effects. IDFs were found to induce gut immunity, improve intestinal integrity and mucosal proliferation, and favor adhesion of probiotics and hence improve human health. Also, IDFs were concluded to improve the bioavailability of plant polyphenols and improve their health-related functional roles. Ultimately, dietary fibers processing by modification shows potential to enhance fibers-based functional food production, in addition to increase the economic value and usage of food-rich fibers and their by-products.

13.
Eur J Pharmacol ; 927: 175057, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636525

RESUMO

Hypertension is a major risk factor for cardiovascular disease and Chinese herb monomers could provide new structural skeletons for anti-hypertension new drug development. Paeonol is a Chinese herbal monomer extracted from Cortex moutan, exhibited some anti-hypertensive activity. The study focused on the structural optimization of paeonol to provide promising lead compounds for anti-hypertension new drug development. Herein, twelve new paeonol derivatives (PD) were designed and synthesized and their vasodilation activity was evaluated by in vitro vasodilation drug screening platform based on Myograph. Its anti-hypertension activity, PD-C302 (2-hydroxy-4-methoxyvalerophenone) as a representative with the optimal vasodilation activity, was determined by its response to blood pressure in spontaneously hypertensive rats (SHR) in vivo. Moreover, its molecular mechanism was probed by the vasodilation activity of rat superior mesenteric artery rings with or without endothelium pre-contracted by potassium chloride (KCl) or phenylephrine hydrochloride (PE). It was indicated that PD-C302 significantly reduced the blood pressure in SHR, which would involve in PD-C302-induced vasodilation. Furthermore, endothelium-dependent pathways and endothelium-independent pathways both contributed importantly to PD-C302-induced vasodilation at low concentration of PD-C302. Endothelium-independent pathways (vascular smooth muscle cell-mediated vasodilation), were mainly responsible for the PD-C302-induced vasodilation at high concentration of PD-C302, which involved in opening multiple K+ channels to restrain Ca2+ channels, and then triggered vasodilation to reduce blood pressure. PD-C302 has a simple structure and favorable anti-hypertensive activity in vivo, which could be a promising lead compound for anti-hypertension new drug development.


Assuntos
Hipertensão , Vasodilatação , Acetofenonas , Animais , Anti-Hipertensivos/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Endotélio Vascular , Cloreto de Potássio/farmacologia , Ratos , Ratos Endogâmicos SHR
14.
Phytomedicine ; 99: 153999, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35220130

RESUMO

BACKGROUND: Glycyrrhizin (GL) is a major active constituent of licorice root (Glycyrrhiza glabra) that is considered one of the oldest and most frequently employed botanicals in Chinese medicine and worldwide, with most effects attributed to its rich GL content. Structurally, GL a triterpene saponin that is widely used as a flavoring agent in foodstuffs and cosmetics, and also proposed for various clinical applications with a myriad of health benefits. Pharmacological and biological activities of GL include antiviral, anti-inflammatory, antioxidant, and anticancer activities (in vitro and in vivo). Currently, there is no comprehensive review on GL biological effects and its action mechanisms. PURPOSE: This review summarizes GL pharmacological actions from a molecular biology perception, presented on its metabolism and side effects based on in vitro, in vitro and clinical studies. Moreover, the potential of GL as a nanomedicine delivery system is also summarized. The progress in drug delivery research using GL presented herein is expected to provide a theoretical basis for developing other novel drugs formulations. METHODS: A systematic review was carried out in several electronic databases (Science Direct, SpringerLink, CNKI, PubMed, Web of Science, Elsevier, and Scopus), using the following key words: glycyrrhizin "AND" bioactivity "OR" clinic "OR" therapeutic "OR" drug delivery. This search included manuscripts published between 1989 and 2021. RESULTS: 126 researches were selected and summarized in this review. The analysis of these studies indicated that GL has antiviral activity against different viruses. Further, GL efficiently suppressed the respiratory manifestations associated with COVID-19 by reducing the expression of angiotensin converting enzyme 2 (ACE2) that employed by the virus as an entry point. Otherwise, GL was found to induce antioxidant, anti-inflammatory, immune-modulatory, and anticancer activity. Besides, diminution the particle size of GL to nanometer size significantly augments their action and biodistribution. CONCLUSION: This article summarizes the pharmacological actions of GL. The potential of GL as a nanomedicine delivery system is also presented. Nevertheless, most studies reported provide no deep insight of GL health effects warranting for more future studies to elucidate its action mechanism and potential therapeutic benefits through preclinical and clinical trials.

15.
Food Chem ; 374: 131763, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34896953

RESUMO

Citrus pectin was used as a precursor and cellulose nanofibers as a reinforcing agent, a mixed aerogel with enhanced structural properties was prepared. Pickering emulsion was a template for aerogel formation, embedding thymol. Its potential application in humidity regulating packaging has been investigated. Results showed that emulsion gel containing cellulose nanofibers has slightly larger droplet diameter, better viscoelasticity and emulsification. Composite aerogel has larger pore size and thinner pore wall. Additionally, its tensile and compressive properties have been significantly improved. Moisture absorption was close to 100% of its own weight, thymol was released slowly. Compared with Escherichia coli, aerogel has better resistance to Staphylococcus aureus. When applied on fresh Agaricus bisporus. It was found that relative humidity in package can be stabilized at about 97%. Hardness, color, total phenol content, cell membrane integrity and total antioxidant capacity of Agaricus bisporus were maintained and fresh-keeping period was extended to 5 days.


Assuntos
Nanofibras , Celulose , Embalagem de Alimentos , Fungos , Pectinas
16.
Food Funct ; 12(22): 11656-11670, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34726217

RESUMO

Due to the insolubility of phytosterols in both water and oil, their application in the medicine and health and food industries is limited. In this study, zein and pectin were selected as wall materials of phytosterol nanoparticles to enhance the solubility and bioactivity of phytosterols. The colitis-inhibitory effects of zein-based stigmasterol nanodispersions (ZNs) and zein/pectin-based stigmasterol nanodispersions (ZPNs) were investigated in the sodium dextran sulfate (DSS)-induced colitis mouse model. The results showed that ZPNs' therapeutic effect was better than that of ZNs. According to electron microscopy observation, pectin adsorbed on the surface of zein appeared to form an elastic network structure, which increased the stability of stigmasterol nanodispersions. ZPNs not only relieved the adverse physiological symptoms of colitis in mice, but additionally prevented colonic length shortening and reduced fecal hemoglobin content. Immunohistochemical analysis showed that ZPNs could alleviate colitis by inhibiting the NF-κB signaling pathway involved in the expression of inflammatory factors TNF-α, IL-6, IL-1ß, CSF-1 and coenzyme COX-2. This study suggests that supplement of nano-embedded stigmasterol based on zein and pectin has a positive therapeutic effect on alleviating colitis in mice. Such activities of nano-embedded stigmasterol in humans remain to be investigated.


Assuntos
Colite/metabolismo , Nanopartículas/química , Pectinas/química , Estigmasterol , Zeína/química , Animais , Colite/induzido quimicamente , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Portadores de Fármacos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Estigmasterol/química , Estigmasterol/farmacologia
17.
Toxicol Appl Pharmacol ; 431: 115739, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619160

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers with high mortality and poor prognosis, and the investigation on new approaches and effective drugs for HCC therapy is of great significance. In our study, we demonstrate that treatment with cinobufagin, a natural compound isolated from traditional chinese medicine Chansu, reduces proliferation and the colony formation capacity of the human hepatoma cells in vitro, in addition, cinobufagin induces mitotic arrest in human hepatoma cells. The results of a network pharmacology-based analysis show that EGFR, MAPK1, PTK2, CDK2, MAPK3, ESR1, CDK1, PRKCA, AR, and CSNK2A1 are the key targets involved in the anti-tumor activities of cinobufagin, additionally, several signaling pathways such as proteoglycans in cancer, pathways in cancer, HIF-1 signaling pathway, VEGF signaling pathway, ErbB signaling pathway, and PI3K-AKT signaling pathway are identified as the potential pathways involved in the inhibitory effects of cinobufagin against HCC. Furthermore, at the molecular level, we find that cinobufagin decreases EGFR expression and CDK2 activity in human hepatoma cells. Inhibition of EGFR or CDK2 expression could not only suppress the growth of tumor cells but also enhance the inhibitory effects of cinobufagin on the proliferative potential of human hepatoma cells. We also demonstrate that EGFR positively regulates CDK2 expression. Furthermore, EGFR inhibitor gefitinib or CDK2 inhibitor CVT-313 synergistically enhances anticancer effects of cinobufagin in human hepatoma cells. Taken together, these findings indicate that cinobufagin may exert antitumor effects by suppressing EGFR-CDK2 signaling, and our study suggests that cinobufagin may be a novel, promising anticancer agent for the treatment of HCC.


Assuntos
Antineoplásicos/farmacologia , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Quinase 2 Dependente de Ciclina/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Farmacologia em Rede , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Regulação para Baixo , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células Hep G2 , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Transdução de Sinais
18.
J Agric Food Chem ; 69(40): 11867-11877, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34586790

RESUMO

Sterols and sterol oxidation products (SOPs) are well-known dietary factors influencing atherosclerosis; however, their distribution in vivo after dietary sterol/SOP intake is still unclear. Here, we investigated the tissue distribution of sterols and SOPs in ApoE-/- mice after dietary exposure to diets supplemented with phytosterols (PS), phytosterol oxidation products (POPs), or cholesterol oxidation products (COPs). The results showed that PS intake reduced cholesterol in serum and the liver but increased cholesterol in the brain. PS intake increased the levels of PS in vivo and the levels of 7-keto- and triol-POPs in serum and the liver. COP intake elevated the level of all COPs in serum but did not change the 7-keto-cholesterol level in the liver and brain. All POPs in serum and parts of POPs in the liver and brain increased after dietary POP exposure. Our study indicated that dietary PS and SOPs accumulated in vivo with varying degrees and influenced cerebral cholesterol metabolism.


Assuntos
Fitosteróis , Esteróis , Animais , Apolipoproteínas E/genética , Ingestão de Alimentos , Camundongos , Fitosteróis/metabolismo , Distribuição Tecidual
19.
Int J Biol Macromol ; 182: 2151-2161, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051255

RESUMO

Three water-soluble pectic polysaccharides (WKBP-P2, P3 and P4) were isolated from white kidney bean by ion exchange combined with size-exclusion methods. The structural features were characterized by GC-MS, NMR spectroscopy and HPSEC-MALLS-RI. It was found that three pectic polysaccharides were the major water-extracted polysaccharides in white kidney bean. All the WKBP-P2, P3 and P4 were probably composed of various structural regions including homogalacturonan (HG), xylogalacturonan (XGA), rhamnogalacturonan I (RG-I) regions in backbone, and arabinan region mainly as side chain. However, these pectic polysaccharides were significantly different in molar ratios of these structural regions and molecular size. WKBP-P2 was HG-predominant pectin (partially methyl-esterified) with weight-average molecular weight (Mw) of 1.2 × 104 g/mol, and contained minor RG-I, arabinan and probable XGA regions. WKBP-P3 (Mw of 4.0 × 104 g/mol) primarily embraced XGA, HG, arabinan regions and minor RG-I region. WKBP-4 with highest Mw (4.5 × 105 g/mol) had the most arabinan region (51.3%), which was probably the side chain linked to the backbone composed of RG-I, HG and slight XGA regions. These findings provided a structural basis for study on polysaccharides from white kidney bean, which was benefit for development of functional food.


Assuntos
Pectinas/química , Pectinas/isolamento & purificação , Phaseolus/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Metilação , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética
20.
Food Res Int ; 143: 110237, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992350

RESUMO

In this study, stigmasterol was nanoencapsulated in soy protein isolate -pectin-based nanodispersions. Based on the particle size and zeta-potential, the optimal pectin/SPI ratio of stigmasterol nanodispersion was determined to be 1:10. At this ratio, nanodispersions was manufactured with an average particle size of 477 ± 33 nm, an encapsulation efficiency of 89.37%, and a loading amount of 17.87%. The physical properties and morphology of the nanodispersion were investigated. Fourier transform infrared spectroscopy and differential scanning calorimetry analysis revealed that stigmasterol was loaded in nanodispersions successfully. The pectin, which was used to stable nanodispersion, could restrict the release of stigmasterol in the simulated gastric fluid. This experiment indicated that the presence of pectin can improve the stability of the nanodispersion and can be used to achieve controlled release of bioactive compounds.


Assuntos
Fitosteróis , Proteínas de Soja , Digestão , Tamanho da Partícula , Pectinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA