Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1319698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646543

RESUMO

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Assuntos
Ração Animal , Antioxidantes , Suplementos Nutricionais , Metionina , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Metionina/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Antioxidantes/metabolismo , Ração Animal/análise , Carpa Dourada/crescimento & desenvolvimento , Carpa Dourada/genética , Carpa Dourada/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Front Immunol ; 15: 1342210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318186

RESUMO

This study aimed to assess the impact of dietary selenoprotein extracts from Cardamine hupingshanensis (SePCH) on the growth, hematological parameters, selenium metabolism, immune responses, antioxidant capacities, inflammatory reactions and intestinal barrier functions in juvenile largemouth bass (Micropterus salmoides). The base diet was supplemented with four different concentrations of SePCH: 0.00, 0.30, 0.60 and 1.20 g/Kg (actual selenium contents: 0.37, 0.59, 0.84 and 1.30 mg/kg). These concentrations were used to formulate four isonitrogenous and isoenergetic diets for juvenile largemouth bass during a 60-day culture period. Adequate dietary SePCH (0.60 and 1.20 g/Kg) significantly increased weight gain and daily growth rate compared to the control groups (0.00 g/Kg). Furthermore, 0.60 and 1.20 g/Kg SePCH significantly enhanced amounts of white blood cells, red blood cells, platelets, lymphocytes and monocytes, and levels of hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin in the hemocytes. In addition, 0.60 and 1.20 g/Kg SePCH increased the mRNA expression levels of selenocysteine lyase, selenophosphate synthase 1, 15 kDa selenoprotein, selenoprotein T2, selenoprotein H, selenoprotein P and selenoprotein K in the fish liver and intestine compared to the controls. Adequate SePCH not only significantly elevated the activities of antioxidant enzymes (Total superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase), the levels of total antioxidant capacity and glutathione, while increased mRNA transcription levels of NF-E2-related factor 2, Cu/Zn-superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase. However, adequate SePCH significantly decreased levels of malondialdehyde and H2O2 and the mRNA expression levels of kelch-like ECH-associated protein 1a and kelch-like ECH-associated protein 1b in the fish liver and intestine compared to the controls. Meanwhile, adequate SePCH markedly enhanced the levels of immune factors (alkaline phosphatase, acid phosphatase, lysozyme, complement component 3, complement component 4 and immunoglobulin M) and innate immune-related genes (lysozyme, hepcidin, liver-expressed antimicrobial peptide 2, complement component 3 and complement component 4) in the fish liver and intestine compared to the controls. Adequate SePCH reduced the levels of pro-inflammatory cytokines (tumour necrosis factor-α, interleukin 8, interleukin 1ß and interferon γ), while increasing transforming growth factor ß1 levels at both transcriptional and protein levels in the liver and intestine. The mRNA expression levels of mitogen-activated protein kinase 13 (MAPK 13), MAPK14 and nuclear factor kappa B p65 were significantly reduced in the liver and intestine of fish fed with 0.60 and 1.20 g/Kg SePCH compared to the controls. Histological sections also demonstrated that 0.60 and 1.20 g/Kg SePCH significantly increased intestinal villus height and villus width compared to the controls. Furthermore, the mRNA expression levels of tight junction proteins (zonula occludens-1, zonula occludens-3, Claudin-1, Claudin-3, Claudin-5, Claudin-11, Claudin-23 and Claudin-34) and Mucin-17 were significantly upregulated in the intestinal epithelial cells of 0.60 and 1.20 g/Kg SePCH groups compared to the controls. In conclusion, these results found that 0.60 and 1.20 g/Kg dietary SePCH can not only improve growth, hematological parameters, selenium metabolism, antioxidant capacities, enhance immune responses and intestinal functions, but also alleviate inflammatory responses. This information can serve as a useful reference for formulating feeds for largemouth bass.


Assuntos
Bass , Cardamine , Selênio , Animais , Antioxidantes/metabolismo , Catalase , Bass/genética , Muramidase/metabolismo , Selênio/farmacologia , Cardamine/genética , Cardamine/metabolismo , Glutationa Redutase/genética , Peróxido de Hidrogênio , Intestinos , Selenoproteínas , RNA Mensageiro/genética , Glutationa Peroxidase/genética , Superóxido Dismutase/genética , Claudinas
3.
Fish Shellfish Immunol ; 146: 109414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296006

RESUMO

This experiment was conducted to investigate the impacts of dietary selenium yeast (SeY) on the growth performance, fish body composition, metabolic ability, antioxidant capability, immunity and inflammatory responses in juvenile black carp (Mylopharyngodn piceus). The base diet was supplemented with 0.00, 0.30 and 0.60 g/kg SeY (0.04, 0.59 and 1.15 mg/kg of selenium) to form three isonitrogenous and isoenergetic diets for juvenile black carp with a 60-day. Adequate dietary SeY (0.30 and 0.60 g/kg) could significantly increase the weight gain (WG), special growth rate (SGR) compared to the SeY deficient groups (0.00 g/kg) (P < 0.05). Meanwhile, 0.30 and 0.60 g/kg SeY elevated the mRNA levels of selenoprotein T2 (SEPT2), selenoprotein H (SEPH), selenoprotein S (SEPS) and selenoprotein M (SEPM) in the liver and intestine compared with the SeY deficient groups (P < 0.05). Adequate dietary SeY could promote glucose catabolism and utilization through activating glucose transport (GLUT2), glycolysis (GCK, HK, PFK, PK, PDH), tricarboxylic acid cycle (ICDH and MDH), glycogen synthesis (LG, GCS and GBE) and IRS/PI3K/AKT signal pathway molecules (IRS2b, PI3Kc and AKT1) compared with the SeY deficient groups (P < 0.05). Similarly, adequate dietary SeY could improve lipid transport and triglycerides (TG) synthesis through increasing transcription amounts of CD36, GK, DGAT, ACC and FAS in the fish liver compared with the SeY deficient groups (P < 0.05). In addition, adequate SeY could markedly elevate activities of antioxidant enzymes (T-SOD, CAT, GR, GPX) and contents of T-AOC and GSH, while increased transcription amounts of Nrf2, Cu/Zn-SOD, CAT, and GPX in fish liver and intestine (P < 0.05). However, adequate SeY notably decreased contents of MDA, and the mRNA transcription levels of Keap1 in the intestine compared with the SeY deficient groups (P < 0.05). Adequate SeY markedly increased amounts or levels of the immune factors (ALP, ACP, LZM, C3, C4 and IgM) and the transcription levels of innate immune-related functional genes in the liver and intestine (LZM, C3 and C9) compared to the SeY deficient groups (P < 0.05). Moreover, adequate SeY could notably reduce levels of IL-8, IL-1ß, and IFN-γ and elevate TGF-1ß levels in fish intestine (P < 0.05). The transcription levels of MAPK13, MAPK14 and NF-κB p65 were notably reduced in fish intestine treated with 0.30 and 0.60 g/kg SeY (P < 0.05). In conclusion, these results suggested that 0.30 and 0.60 g/kg SeY could not only improve growth performance, increase Se, glucose and lipid metabolic abilities, enhance antioxidant capabilities and immune responses, but also alleviate inflammation, thereby supplying useful reference for producing artificial feeds in black carp.


Assuntos
Carpas , Selênio , Animais , Antioxidantes/metabolismo , Carpas/genética , Carpas/metabolismo , Selênio/metabolismo , Saccharomyces cerevisiae/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Imunidade Inata , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Suplementos Nutricionais , Dieta/veterinária , RNA Mensageiro , Glucose , Selenoproteínas/metabolismo , Lipídeos , Superóxido Dismutase/metabolismo , Ração Animal/análise , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo
4.
Fish Shellfish Immunol ; 97: 540-553, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31881329

RESUMO

This study investigated the effects of dietary curcumin on growth performance, non-specific immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella). A total of 525 juvenile grass carps with mean initial body weight of (5.30 ± 0.10) g were randomly distributed into five groups with three replicates each, fed five diets containing graded levels of curcumin (0, 196.11, 393.67, 591.46 and 788.52 mg/kg diet) for 60 days. After feeding trial, fifteen fish per tank were challenged with Aeromonas hydrophila and the mortalities were recorded for 7 days. The results showed that optimal dietary curcumin (393.67 mg/kg diet) improved the weight gain (WG) and specific growth rate (SGR) of juvenile grass carp, reduced feed conversion ratio (FCR) and the mortalities after challenge (P < 0.05). Moreover, optimal dietary curcumin increased the activities of lysozyme (LYZ) and acid phosphatase (ACP), and complement 3 (C3) and C4 levels, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of LYZ, C3 and antimicrobial peptides [hepcidin, liver-expressed antimicrobial peptide-2 (LEAP-2), ß-defensin], and anti-inflammatory cytokines of interleukin-10 (IL-10) and transforming growth factor ß1 (TGF-ß1), and inhibitor of κBα (IκBα), whereas down-regulated pro-inflammatory cytokines of tumor necrosis factor-α (TNF-α), IL-1ß, IL-6 and IL-8, and nuclear factor kappa B p65 (NF-κB p65), IκB kinases (IKKα, IKKß and IKKγ) mRNA levels in the liver and blood of grass carp after injection with A. hydrophila (P < 0.05). In addition, optimal dietary curcumin increased the reduced glutathione (GSH) content and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the liver of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of these antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2), whereas down-regulated Kelch-like ECH-associated protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the liver and blood of grass carp after injection with A. hydrophila. Thus, optimal dietary curcumin supplementation could promote growth of juvenile grass carp, reduce FCR, and enhance disease resistance, innate immunity and antioxidant capacity of fish, attenuating inflammatory response. However, dietary excessive curcumin had negative effect on fish. Based on second-order regression analysis between dietary curcumin contents and weight gain, the optimum requirement of dietary curcumin in juvenile grass carp was determined to be 438.20 mg/kg diet.


Assuntos
Carpas/crescimento & desenvolvimento , Carpas/imunologia , Curcumina/farmacologia , Suplementos Nutricionais/análise , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Transdução de Sinais , Aeromonas hydrophila , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carpas/microbiologia , Citocinas/imunologia , Resistência à Doença , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Imunidade Inata , Fator 2 Relacionado a NF-E2/imunologia , NF-kappa B/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA