Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 2): 129900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38316329

RESUMO

The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano­selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.


Assuntos
Quitosana , Malus , Mercúrio , Selênio , Poluentes Químicos da Água , Humanos , Sucos de Frutas e Vegetais , Malus/química , Quitosana/química , Adsorção , Cinética , Concentração de Íons de Hidrogênio
2.
Int J Biol Macromol ; 241: 124533, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105248

RESUMO

Consumption of water and tea beverages leads to the intake of heavy metals by humans. Development of technology for decontamination greatly reduces the risks of the heavy metal exposure. In this study, environment-friendly chitosan-tartaric acid biosorbents (CTBs) were synthesized by a facile one-step cross-linking strategy to mitigate the Cu(II) and Cd(II) contamination in water and tea beverages. The cross linkage of tartaric acid and chitosan endowed CTBs with excellent properties in aspects of surface roughness, mechanical strength, and acid resistance. Adsorption performance and mechanism of CTBs were studied, and the Langmuir isotherm model and pseudo-second-order kinetic model were adhered during adsorption. Up to 90 % removal efficiencies of Cu(II) and Cd(II) from water and tea beverages by CTBs were achieved. Moreover, the adsorption showed only a slight reduction in the quality of tea beverages. This study offers a new insight for reduction of heavy metals-pollution in beverages.


Assuntos
Quitosana , Metais Pesados , Poluentes Químicos da Água , Humanos , Cádmio , Água , Bebidas , Chá , Adsorção , Cinética , Concentração de Íons de Hidrogênio
3.
Cancer Med ; 12(10): 11177-11190, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880159

RESUMO

BACKGROUND: Yin Yang-1 (YY1) is identified as a transcription factor with multiple functions. However, the role of YY1 in tumorigenesis remains controversial and its regulatory effects may depend upon not only cancer types, but also its interacting partners, chromatin structure, and the context in which it acts. It has been detected that YY1 was highly expressed in colorectal cancer (CRC). Intriguingly, many YY1-repressed genes exhibit tumor suppressive potential while YY1 silencing is related to chemotherapy resistance. Therefore, it is crucial to meticulously explore YY1 protein structure and the dynamic alteration of its interactome in each cancer type. This review attempts to describe the structure of YY1, summarize the mechanism that influence the expression level of YY1 and also highlight the recent advances in our understanding of regulatory insights of YY1 functions in CRC. METHODS: Related studies were identified through scoping search of PubMed, Web of science, Scopus and Emhase concerning the terms of "colorectal cancer", colorectal carcinoma" or CRC with "YY1". The retrieval strategy included title, abstract, and keywords with no language limitations. All the included articles were categorized depending on the mechanisms they explored. RESULTS: In total, 170 articles were identified for further screening. After removing the duplication, not relevant outcomes and review articles, 34 were finally included in the review. Among them, 10 articles revealed the reasons of YY1 high expression in CRC, 13 articles explored YY1 function in CRC, and 11 articles fell into both aspects. In addition, we also summarized 10 clinical trials concerning the expression and activity of YY1 in various diseases, which offers a hint for future application. CONCLUSIONS: YY1 is highly expressed in CRC and broadly recognized as an oncogenic factor during the whole course of CRC. Sporadic controversial views are raised in term of CRC treatment, reminding us that future studies should take the influence of therapeutic regimens into concern.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição , Humanos , Carcinogênese/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
4.
Food Chem ; 409: 135243, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36584525

RESUMO

A rapid, facile and ultrasensitive fluorescence sensing system based on beer-derived nitrogen, phosphorus co-doped carbon quantum dots (N, P-CQDs) for the detection of ascorbic acid (AA) in fruits was proposed. N, P-CQDs were successfully synthesized by one-step hydrothermal method, which afforded a high quantum yield (21.7 %), and showed the fluorescence with a maximum emission wavelength of 450 nm at an excitation wavelength of 370 nm. Further, N, P-CQDs were employed as an efficient sensor for ultrasensitive Fe3+-detection at concentrations ranging from 1-20 µM and 100-300 µM, respectively. N, P-CQDs@Fe3+ showed a high sensitivity and selectivity for AA detection. A linear response range for AA was obtained from 1 to 200 µM with limit of detection of 0.84 µM was obtained for AA. The result of MTT test showed that N, P-CQDs exhibit low toxicity, providing fast, accurate and less toxic route for testing AA in the food analysis fields.


Assuntos
Ácido Ascórbico , Pontos Quânticos , Ácido Ascórbico/análise , Corantes Fluorescentes/análise , Carbono/análise , Nitrogênio/análise , Frutas/química , Fósforo/análise , Cerveja/análise , Limite de Detecção , Espectrometria de Fluorescência/métodos
5.
Int Immunopharmacol ; 114: 109518, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36502594

RESUMO

BACKGROUND: ATP7A is an important copper transporter that regulates numerous cellular biological processes. However, the role of ATP7A in immunotherapy and targeted therapy, especially for hepatocellular carcinoma (HCC), remains unknown. METHODS: We analyzed ATP7A expression and its effect on digestive system tumor prognoses, assessed its expression in tissue microarrays from 319 HCC patients, and investigated the relationship between ATP7A expression and tumor immunity. Specifically, we evaluated the possible association between ATP7A and programmed death ligand 1 (PD-L1) expression in human HCC tissues. Finally, we analyzed the effect of ATP7A on sorafenib efficacy in HCC. RESULTS: ATP7A is generally highly expressed in digestive system tumors but related to poor prognosis only in HCC. ATP7A levels are positively associated with immune cell infiltration and immune checkpoint expression (especially PD-L1). HCC patients coexpressing APT7A and PD-L1 demonstrate poor prognoses. Moreover, HCC patients with high ATP7A levels were more sensitive to sorafenib and demonstrated higher survival rates after sorafenib treatment. CONCLUSIONS: This study provides insights into the correlation between ATP7A levels and tumor immune infiltration and immune checkpoint function in HCC, sheds light on the significance of ATP7A in cancer progression, and provides guidance for more effective and general therapeutic strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Sorafenibe/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas de Transporte de Cobre , Imunoterapia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Fragmentos de Peptídeos/metabolismo
6.
Int J Biol Macromol ; 176: 217-225, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33581208

RESUMO

Chitosan-pectin gel beads (CPBs) were synthesized via a facile and green method and applied to remove heavy metals from aqueous solution. The structural characteristics of CPBs were investigated by SEM and FTIR, the mechanical strength of CPBs was measured by Texture Analyzer and the stability of CPBs was evaluated in acidic solution. To study the adsorption characteristics, the effect of pH, contact time, initial heavy metals concentration, temperature, adsorption mechanism and regeneration were systematically investigated. The adsorption kinetics fitted well pseudo-second-order model, and the adsorption isotherms were well described by Langmuir model. The maximum adsorption capacities of Cu(II), Cd(II), Hg(II) and Pb(II) were 169.4, 177.6, 208.5 and 266.5 mg/g, respectively. The adsorption-desorption experiments revealed that the CPBs exhibited a great reusability. Thus, the synthesized CPBs in this study had the potential to be utilized as an environment-friendly and green adsorbent for the removal of heavy metals.


Assuntos
Quitosana/química , Metais Pesados/química , Pectinas/química , Poluentes Químicos da Água/química , Purificação da Água , Adsorção , Géis
7.
MedComm (2020) ; 2(4): 730-755, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34977874

RESUMO

Necroptosis, a distinctive type of programmed cell death different from apoptosis or necrosis, triggered by a series of death receptors such as tumor necrosis factor receptor 1 (TNFR1), TNFR2, and Fas. In case that apoptosis process is blocked, necroptosis pathway is initiated with the activation of three key downstream mediators which are receptor-interacting serine/threonine protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). The whole process eventually leads to destruction of the cell membrane integrity, swelling of organelles, and severe inflammation. Over the past decade, necroptosis has been found widely involved in life process of human beings and animals. In this review, we attempt to explore the therapeutic prospects of necroptosis regulators by describing its molecular mechanism and the role it played in pathological condition and tissue homeostasis, and to summarize the research and clinical applications of corresponding regulators including small molecule inhibitors, chemicals, Chinese herbal extracts, and biological agents in the treatment of various diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA