RESUMO
The antimicrobial, antidiabetic, and anti-inflammatory activities efficiency of Aerva lanata plant extracts (aqueous (Aqu-E), acetone (Ace-E), and ethanol (Eth-E)) were investigated in this study. Furthermore, the active molecules exist in the crude extract were characterized by UV-Visible spectrophotometer, Fourier transform infrared (FTIR), High-performance liquid chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) analyses. The preliminary phytochemical study revealed that the Ace-E restrain more phytochemicals like alkaloids, saponins, anthraquinone, tannins, phenolics, flavonoids, glycosides, terpenoids, amino acid, steroids, protein, coumarin, as well as quinine than Aqu-E and Eth-E. Accordingly to this Ace-E showed considerable antimicrobial activity as the follows: for bacteria S. aureus > E. coli > K. pneumoniae > P. aeruginosa > B. subtilis and for fungi T. viride > A.flavus > C. albicans > A.niger at 30 mg ml concentration. Similarly, Ace-E showed considerable antidiabetic (α-amylase: 71.7 % and α-glucosidase: 70.1 %) and moderate anti-inflammatory (59 % and 49.8 %) activities. The spectral and chromatogram studies confirmed that the Ace-E have pharmaceutically valuable bioactive molecules such as (Nbutyl)-octadecane, propynoic acid, neophytadiene, and 5,14-di (N-butyl)-octadecane. These findings suggest that Ace-E from A. lanata can be used to purify additional bioactive substances and conduct individual compound-based biomedical application research.
Assuntos
Alcanos , Amaranthaceae , Anti-Infecciosos , Acetona , Hipoglicemiantes , Escherichia coli , Staphylococcus aureus , Amaranthaceae/química , Antioxidantes , AntibacterianosRESUMO
Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.
Assuntos
Microalgas , Saccharum , Ácidos Graxos , Solventes , Lipídeos , Biocombustíveis , Carbono , Metanol , BiomassaRESUMO
Background: Exosomes, microvesicles, carry and release several vital molecules across cells, tissues, and organs. Epicardial adipose tissue exosomes are critical in the development and progression of coronary artery disease (CAD). It is hypothesized that exosomes may transport causative molecules from inflamed tissue and deliver to the target tissue and progress CAD. Thus, identifying and inhibiting the CAD-associated proteins that are being transported to other cells via exosomes will help slow the progression of CAD. Methods: This study uses a systems biological approach that integrates differential gene expression in the CAD, exosomal cargo assessment, protein network construction, and functional enrichment to identify the crucial exosomal cargo protein target. Meanwhile, absorption, distribution, metabolism, and excretion (ADME) screening of Panax ginseng-derived compounds was conducted and then docked against the protein target to identify potential inhibitors and then subjected to molecular dynamics simulation (MDS) to understand the behavior of the protein-ligand complex till 100 nanoseconds. Finally, density functional theory (DFT) calculation was performed on the ligand with the highest affinity with the target. Results: Through the systems biological approach, Mothers against decapentaplegic homolog 2 protein (SMAD2) was determined as a potential target that linked with PI3K-Akt signaling, Ubiquitin mediated proteolysis, and the focal adhesion pathway. Further, screening of 190 Panax ginseng compounds, 27 showed drug-likeness properties. Inermin, a phytochemical showed good docking with -5.02 kcal/mol and achieved stability confirmation with SMAD2 based on MDS when compared to the known CAD drugs. Additionally, DFT analysis of inermin showed high chemical activity that significantly contributes to effective target binding. Overall, our computational study suggests that inermin could act against SMAD2 and may aid in the management of CAD.
Assuntos
Doença da Artéria Coronariana , Panax , Simulação de Dinâmica Molecular , Ligantes , Fosfatidilinositol 3-QuinasesRESUMO
The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.
Assuntos
Ansiolíticos , Coriandrum , Transtornos Mentais , Humanos , Coriandrum/química , Simulação de Acoplamento Molecular , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Transtornos Mentais/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismoRESUMO
The pharmacological properties of plants lie in the content of secondary metabolites that are classified into different categories based on their biosynthesis, structures, and functions. MicroRNAs (miRNAs) are small non-coding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling; however, information about their involvement in secondary metabolism is still limited. Cumin is one of the most popular seeds from the plant Cuminum cyminum, with extensive applications in herbal medicine and cooking; nevertheless, no previous studies focus on the miRNA profile of cumin. In this study, the miRNA profile of C. cyminum and its association with the biosynthesis of secondary metabolites were determined using NGS technology. The sequencing data yielded 10,956,054 distinct reads with lengths ranging from 16 to 40 nt, of which 349 miRNAs were found to be conserved and 39 to be novel miRNAs. Moreover, this work identified 1959 potential target genes for C. cyminum miRNAs. It is interesting to note that several conserved and novel miRNAs have been found to specifically target important terpenoid backbone, flavonoid biosynthesis, and lipid/fatty acid pathways enzymes. We believe this investigation will aid in elucidating the implications of miRNAs in plant secondary metabolism.
RESUMO
Neurodegeneration has been associated with chronic inflammation states in the brain. For this reason, attention has been directed to drugs indicated as anti-inflammatory as possible therapies for the treatment of said conditions. Tagetes lucida has been widely used as a folk remedy in illnesses associated with the central nervous system and inflammatory ailments. Among the compounds that stand out in the plant against these conditions are coumarins, such as 7-O-prenyl scopoletin, scoparone, dimethylfraxetin, herniarin, and 7-O-prenylumbelliferone. Therefore, the relationship between the therapeutic effect and the concentration was evaluated through pharmacokinetic and pharmacodynamic studies, including vascular permeability evaluation by blue Evans and pro- and anti-inflammatory cytokines quantification, under a neuroinflammation model induced by lipopolysaccharide by the oral administration of three different doses (5, 10, and 20 mg/kg) of a bioactive fraction of T. lucida. In the present study, it was found that all doses showed a neuroprotective and immunomodulatory effect, although the doses of 10 and 20 mg/kg were able to exert their effect for a longer time and to a greater extent. The protective effects of the fraction may be mainly associated with the DR, HR, and SC coumarins due to their structural profile and plasmatic and brain tissue bioavailability.
RESUMO
Tagetes lucida has been widely used as a folk remedy in illnesses associated with the central nervous system and inflammatory ailments. Among the chemical compounds that stand out in the plant against these conditions are coumarins, such as 7-O-prenylscopoletin (PE), scoparone (SC), dimethylfraxetin (DF), herniarin (HR), and 7-O-prenylumbelliferone (PU), considered potential anti-neuroinflammatory compounds. Therefore, the relationship between the therapeutic effect and the dose can be evaluated through pharmacokinetic-pharmacodynamic (PK-PD) studies under a model of neuroinflammation induced by lipopolysaccharide (LPS). Nonetheless, accomplishing those studies requires an accurate and robust analytical method for the detection of these compounds in different biological matrices of interest. Due to the above, in the present study, a bioanalytical method was established by HPLC-DAD-UV for the simultaneous quantification of the coumarins present in the hexane extract of T. lucida, which was able to determine the temporal concentration profiles of each of the coumarins in the plasma, brain, kidney, and spleen samples of healthy and damaged mice. Coumarins showed an increase in plasma concentrations of up to three times in the neuroinflammation model, compared to healthy mice, so it was possible to quantify the therapeutic agents in the main target organ, the brain. The ability of compounds to cross the blood-brain barrier is an advantage in the treatment of diseases associated with neuroinflammation processes that can be studied in future PK-PD evaluations.
RESUMO
Ethnopharmacological relevance: The past couple of decades have witnessed the global resurgence of medicinal plants in the field of herbal-based health care. Increased consumption of medicinal plants and their derivative products is the major cause of the adulteration issues in herbal industries. As a result, the quality of herbal products is affected by spurious and unauthorized raw materials. Recent development in molecular plant identification using DNA barcodes has become a robust methodology to identify and authenticate the adulterants in herbal samples. Hence, rapid and accurate identification of medicinal plants is the key to success for the herbal industry. Aim of the study: This paper provides a comprehensive review of the application of DNA barcoding and advanced technologies that have emerged over the past 10 years related to medicinal plant identification and authentication and the future prospects of this technology. Materials and methods: Information on DNA barcodes was compiled from scientific databases (Google Scholar, Web of Science, SciFinder and PubMed). Additional information was obtained from books, Ph.D. thesis and MSc. Dissertations. Results: Working out an appropriate DNA barcode for plants is challenging; the single locus-based DNA barcodes (rbcL, ITS, ITS2, matK, rpoB, rpoC, trnH-psbA) to multi-locus DNA barcodes have become the successful species-level identification among herbal plants. Additionally, multi-loci have become efficient in the authentication of herbal products. Emerging advances in DNA barcoding and related technologies such as next-generation sequencing, high-resolution melting curve analysis, meta barcodes and mini barcodes have paved the way for successful herbal plant/samples identification. Conclusion: DNA barcoding needs to be employed together with other techniques to check and rationally and effectively quality control the herbal drugs. It is suggested that DNA barcoding techniques combined with metabolomics, transcriptomics, and proteomics could authenticate the herbal products. The invention of simple, cost-effective and improved DNA barcoding techniques to identify herbal drugs and their associated products of medicinal value in a fool-proof manner will be the future thrust of Pharmacopoeial monograph development for herbal drugs.
RESUMO
Galphimia spp. is popularly used in Mexican traditional medicine. Some populations of Galphimia exert anxiolytic and sedative effects due to the presence of the modified triterpenoids galphimines. However, the galphimine synthesis pathway has not yet been elucidated. Hence, in this study, a comparative transcriptome analysis between two contrasting populations of Galphimia spp., a galphimine-producer, and a non-galphimine-producer, is performed using RNA-Seq in the Illumina Next Seq 550 platform to identify putative candidates genes that encode enzymes of this metabolic pathway. Transcriptome functional annotation was performed using the Blast2GO in levels of gene ontology. For differential expression analysis, edgeR, pheatmap, and Genie3 library were used. To validate transcriptome data, qPCR was conducted. In producer and non-producer plants of both populations of Galphimia spp., most of the transcripts were grouped in the Molecular Function level of gene ontology. A total of 680 differentially expressed transcripts between producer and non-producer plants were detected. In galphimine-producer plants, a larger number of highly expressed transcripts related to acyclic and polycyclic terpene synthesis were identified. As putative candidate genes involved in the galphimine synthesis pathway, P450 family members and enzymes with kinase activity were identified.
RESUMO
Chromium (Cr) toxicity leads to the enhanced production of reactive oxygen species (ROS), which are extremely toxic to the plant and must be minimized to protect the plant from oxidative stress. The potential of plant-growth-promoting rhizobacteria (PGPR) and earthworms in plant growth and development has been extensively studied. The present study was aimed at investigating the effect of two PGPR (Pseudomonas aeruginosa and Burkholderia gladioli) along with earthworms (Eisenia fetida) on the antioxidant defense system in Brassica juncea seedlings under Cr stress. The Cr toxicity reduced the fresh and dry weights of seedlings, enhanced the levels of superoxide anion (O2â¢-), hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte leakage (EL), which lead to membrane as well as the nuclear damage and reduced cellular viability in B. juncea seedlings. The activities of the antioxidant enzymes, viz., superoxide dismutase (SOD), guaiacol peroxidase (POD), ascorbate peroxidase (APOX), glutathione peroxidase (GPOX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were increased; however, a reduction was observed in the activity of catalase (CAT) in the seedlings under Cr stress. Inoculation of the PGPR and the addition of earthworms enhanced the activities of all other antioxidant enzymes except GPOX, in which a reduction of the activity was observed. For total lipid- and water-soluble antioxidants and the non-enzymatic antioxidants, viz., ascorbic acid and glutathione, an enhance accumulation was observed upon the inoculation with PGPR and earthworms. The supplementation of PGPR with earthworms (combined treatment) reduced both the reactive oxygen species (ROS) and the MDA content by modulating the defense system of the plant. The histochemical studies also corroborated that the combined application of PGPR and earthworms reduced O2â¢-, H2O2, lipid peroxidation, and membrane and nuclear damage and improved cell viability. The expression of key antioxidant enzyme genes, viz., SOD, CAT, POD, APOX, GR, DHAR, and GST showed the upregulation of these genes at post-transcriptional level upon the combined treatment of the PGPR and earthworms, thereby corresponding to the improved plant biomass. However, a reduced expression of RBOH1 gene was noticed in seedlings supplemented under the effect of PGPR and earthworms grown under Cr stress. The results provided sufficient evidence regarding the role of PGPR and earthworms in the amelioration of Cr-induced oxidative stress in B. juncea.
RESUMO
Nanoparticles (NPs) offer great promise for biomedical, environmental, and clinical applications due to their several unique properties as compared to their bulk counterparts. In this review article, we overview various types of metal NPs and magnetic nanoparticles (MNPs) in monolithic form as well as embedded into polymer matrices for specific drug delivery and bio-imaging fields. The second part of this review covers important carbon nanostructures that have gained tremendous attention recently in such medical applications due to their ease of fabrication, excellent biocompatibility, and biodegradability at both cellular and molecular levels for phototherapy, radio-therapeutics, gene-delivery, and biotherapeutics. Furthermore, various applications and challenges involved in the use of NPs as biomaterials are also discussed following the future perspectives of the use of NPs in biomedicine. This review aims to contribute to the applications of different NPs in medicine and healthcare that may open up new avenues to encourage wider research opportunities across various disciplines.
Assuntos
Nanopartículas Metálicas , Nanoestruturas , Carbono/química , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanoestruturas/uso terapêutico , FototerapiaRESUMO
MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are two main categories of noncoding RNAs (ncRNAs) that can influence essential biological functions in various ways, as well as their expression and function are tightly regulated in physiological homeostasis. Additionally, the dysregulation of these ncRNAs seems to be crucial to the pathogenesis of human diseases. The latest findings indicate that ncRNAs execute vital roles in cancer initiation and progression, and the cancer phenotype can be reversed by modulating their expression. Available scientific discoveries suggest that phytochemicals such as polyphenols, alkaloids, terpenoids, and organosulfur compounds can significantly modulate multiple cancer-associated miRNAs and lncRNAs, thereby inhibiting cancer initiation and development. However, despite promising outcomes of experimental research, only a few clinical trials are currently being conducted to evaluate the therapeutic effectiveness of these compounds. Nevertheless, understanding phytochemical-mediated ncRNA regulation in cancer and the underlying molecular mechanisms on tumor pathophysiology can aid in the development of novel therapeutic strategies to combat this deadly disease.
Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/prevenção & controle , Compostos Fitoquímicos/farmacologia , RNA Longo não Codificante/genéticaRESUMO
In order to study the quality of life of patients with functional constipation based on dynamic magnetic resonance defecation, the biofeedback therapy combined with comprehensive nursing intervention was used to diagnose and treat the patients, so as to explore its clinical efficacy and its impact on patients' quality of life. The obstructed defecation surgical treatment carries frequent recurrences, and dynamic magnetic resonance imaging defecography evaluated and elucidated the underlying anatomic features. This research selected 80 patients who came to our hospital for treatment of functional constipation and evaluated and recorded various clinical indicators before and after treatment in the form of questionnaire survey. The results showed that the clinical symptom scores of patients with functional constipation before and after treatment were greatly different (P < 0.05). Thus, the biofeedback therapy combined with comprehensive nursing intervention showed a good clinical effect in the treatment of patients with functional constipation and significantly improved the quality of life of patients, showing high clinical application and promotion value. A convenient diagnostic procedure is represented by the dynamic magnetic resonance imaging in females, especially pelvic floor organs dynamic imaging during defecation.
Assuntos
Defecação , Qualidade de Vida , Biorretroalimentação Psicológica , Constipação Intestinal/diagnóstico por imagem , Constipação Intestinal/terapia , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância MagnéticaRESUMO
Potable and good-quality drinking water availability is a serious global concern, since several pollution sources significantly contribute to low water quality. Amongst these pollution sources, several are releasing an array of hazardous agents into various environmental and water matrices. Unfortunately, there are not very many ecologically friendly systems available to treat the contaminated environment exclusively. Consequently, heavy metal water contamination leads to many diseases in humans, such as cardiopulmonary diseases and cytotoxicity, among others. To solve this problem, there are a plethora of emerging technologies that play an important role in defining treatment strategies. Phytoremediation, the usage of plants to remove contaminants, is a technology that has been widely used to remediate pollution in soils, with particular reference to toxic elements. Thus, hydroponic systems coupled with bioremediation for the removal of water contaminants have shown great relevance. In this review, we addressed several studies that support the development of phytoremediation systems in water. We cover the importance of applied science and environmental engineering to generate sustainable strategies to improve water quality. In this context, the phytoremediation capabilities of different plant species and possible obstacles that phytoremediation systems may encounter are discussed with suitable examples by comparing different mechanistic processes. According to the presented data, there are a wide range of plant species with water phytoremediation potential that need to be studied from a multidisciplinary perspective to make water phytoremediation a viable method.
Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Humanos , Solo , ÁguaRESUMO
Neem (Azadirachta indica) is a very popular traditional medicinal plant used since ancient times to treat numerous ailments. MicroRNAs (miRNAs) are highly conserved, non-coding, short RNA molecules that play important regulatory roles in plant development and metabolism. In this study, deploying a high stringent genome-wide computational-based approach and following a set of strict filtering norms a total of 44 potential conserved neem miRNAs belonging to 21 families and their corresponding 48 potential target transcripts were identified. Important targets include Squamosa promoter binding protein-like proteins, NAC, Scarecrow proteins, Auxin response factor, and F-box proteins. A biological network has also been developed to understand the miRNA-mediated gene regulation using the minimum free energy (MFE) values of the miRNA-target interaction. Moreover, six selected miRNAs were reported to be involved in secondary metabolism in other plant species (miR156a, miR156l, miR160, miR164, miR171, miR395) were validated by qPCR and their tissue-specific differential expression pattern was observed in leaves and stem. Except for ain-miR395, all the other miRNAs were found overexpressed in the stem as compared to leaves. To the best of our knowledge, this is the first report of neem miRNAs and we believe the finding of the present study will be useful for the functional genomic study of medicinal plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02839-z.
RESUMO
MicroRNAs (miRNAs) are small noncoding RNA molecules that play crucial post-transcriptional regulatory roles in plants, including development and stress-response signaling. However, information about their involvement in secondary metabolism is still limited. Murraya koenigii is a popular medicinal plant, better known as curry leaves, that possesses pharmaceutically active secondary metabolites. The present study utilized high-throughput sequencing technology to investigate the miRNA profile of M. koenigii and their association with secondary metabolite biosynthesis. A total of 343,505 unique reads with lengths ranging from 16 to 40 nt were obtained from the sequencing data, among which 142 miRNAs were identified as conserved and 7 as novel miRNAs. Moreover, 6078 corresponding potential target genes of M. koenigii miRNAs were recognized in this study. Interestingly, several conserved and novel miRNAs of M. koenigii were found to target key enzymes of the terpenoid backbone and the flavonoid biosynthesis pathways. Furthermore, to validate the sequencing results, the relative expression of eight randomly selected miRNAs was determined by qPCR. To the best of our knowledge, this is the first report of the M. koenigii miRNA profile that may provide useful information for further elucidation of the involvement of miRNAs in secondary metabolism. These findings might be crucial in the future to generate artificial-miRNA-based, genetically engineered M. koenigii plants for the overproduction of medicinally highly valuable secondary metabolites.
RESUMO
microRNAs (miRNAs) are highly conserved, short (~ 21-nucleotide), endogenous, non-coding RNA molecules that play major roles in post-transcriptional silencing by guiding target mRNA cleavage or translational inhibition. In this study, applying high-stringent genome-wide computational-based approaches, a total of 28 putative miRNAs belonging to 17 miRNA families were identified from an antioxidant-rich medicinal plant passion fruit (Passiflora edulis). Inter-tissue (leaves and fruits) and inter-varietal (yellow and purple fruit varieties) quantitative study of six putative passion fruit miRNAs (ped-miR160, ped-miR164, ped-miR166, ped-miR393, ped-miR394, and ped-miR398) showed differential expression. Using psRNATarget tool, a total of 25 potential target proteins of the characterized passion fruit miRNAs were also identified. Most of the target proteins identified in this study, including SQUAMOSA promoter binding, Class III HD-Zip, NAC, Scarecrow, APETALA2, Auxin response factor, MYB, and superoxide dismutase, were found to be involved in development, metabolism, and defense/stress response signaling.
RESUMO
Two new prenylated acylphloroglucinols, paleacenins A (1) and B (2), were isolated from the rhizome n-hexane and chloroform extracts of the fern Elaphoglossum paleaceum. Both compounds were found to possess the same geranylated filicinic acid moiety but have a different phloroglucinol ring substituent. Their structures were determined using 1H and 13C NMR spectroscopic, HRMS, and ECD analysis. The plant extracts and purified compounds were assayed for inhibition of monoamine oxidase (MAO) activity, and the n-hexane and chloroform extracts displayed 25.0% and 26.5% inhibition of MAO-A, respectively, as well as 42.5% and 23.7% inhibition of MAO-B, respectively. Compounds 1 and 2 exhibited IC50 values of 31.0 (1.3) µM for MAO-A and 4.7 (4.4) µM for MAO-B. Paleacenin A (1) showed a higher selective index (SI) toward MAO-B (SIMAO-B/MAO-A 0.1), and paleacenin B (2) exhibited selectivity to MAO-A (SIMAO-B/MAO-A, 3.5). The extracts showed cytotoxicity against a panel of prostate, cervix, breast, and colon cancer cell lines (IC50 values between 1.7 and 10.6 µg/mL); the pure compounds were more active against the prostate, cervix, and colon cancer cell lines. Paleacenins A (1) and B (2), with IC50 values of 46 and 41 µM, respectively, inhibited nitric oxide production by the RAW264.7 murine macrophage model.
Assuntos
Gleiquênias/química , Floroglucinol/isolamento & purificação , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , Camundongos , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/isolamento & purificação , Inibidores da Monoaminoxidase/farmacologia , Floroglucinol/química , Floroglucinol/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Células RAW 264.7 , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-AtividadeRESUMO
Seed-mediated Gold-Iron oxide yolk-shell nanoparticles (YSNPs) were synthesized and functionalized with cy5 attached- thiolated single strand DNA probe for the detection of mutated DNA. The optimum concentration of thiolated DNA determined from a bathochromic shift of surface plasmon resonance (SPR) peak, was 0.177µM. The effect of pH (2-10), temperature (4, 37, 60 and 100 °C), and ionic strengths (1 M to 4 M) on the stability of ssDNA probe tethered YSNPs, studied with the assistance of flocculation parameter. The detection of mutation in DNA was possible using such ssDNA probe functionalized and stabilized nanoparticles. The hybridization of the oligonucleotide probe with the complementary, non-complementary and mutated DNA strands are determined via their respective intensities of the fluorescence of cy5, an efficient fluorescent marker. The intensities help in the comprehension of the specificity of the system. The report predicts controlled efficiency of hybridization with the aid of Hamaker constant, which is determined as 1.15 × 10-20 J for DNA functionalized YSNPs. The minimum concentration of target DNA detected using this methodology was 1.2 × 10-11 mol/L.
Assuntos
Pareamento Incorreto de Bases , DNA/análise , Compostos Férricos/química , Ouro/química , Magnetismo , Nanopartículas Metálicas/química , Técnicas Biossensoriais , Calibragem , DNA/química , Fluorescência , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Oligonucleotídeos/química , Concentração Osmolar , Temperatura , Difração de Raios XRESUMO
Galphimia glauca (Cav.) Kuntze is an important endemic plant species, which possesses many medicinal properties and has been used in the Mexican traditional medicine for its sedative, anxiolytic, anticonvulsant, antiasthmatic and antiallergic properties. The therapeutic properties of this plant are mainly due to the presence of diverse bioactive compounds such as flavonoids, triterpenoids, and phenolics. Several triterpenoids and flavonoids compounds have been isolated and identified. Modern studies have demonstrated many biological activities such as anti-inflammatory, antidiarrheal, gastroenteritis, antimalarial and cytotoxic activities. Nevertheless, many studies are restricted to the crude extract, and many bioactive compounds are yet to be identified and validated according to its traditional use. However, its commercial exploitation and use are highly limited due to the non-availability of enough plant material and lack of knowledge about its agronomical practices. Moreover, the misinterpretation and mislabeling of closely related species of the genus Galphimia Cav. as G. glauca or G. gracilis is a common problem for its rigorous scientific study and commercial exploitation. The present review provides comprehensive knowledge based on the available scientific literature. To the best of our knowledge, this is the first review on G. glauca. This comprehensive information will certainly provide a guide for the better understanding and utilization of G. glauca for its scientific and industrial exploitation.