Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(11): 6834-6856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36048341

RESUMO

Parkinson's disease (PD) is a chronic motor disorder, characterized by progressive loss of dopaminergic neurons. Numerous studies suggest that glucagon-like peptide-1 (GLP-1) secretagogue has a neuroprotective role in PD models. The present study evaluated potential of coffee bioactive compounds in terms of their ability to bind GPR-40/43 and tested the neuroprotective effect of best candidate on rotenone-induced PD mice acting via GLP-1 release. In silico molecular docking followed by binding free energy calculation revealed that chlorogenic acid (CGA) has a strong binding affinity for GPR-40/43 in comparison to other bioactive polyphenols. Molecular dynamics simulation studies revealed stable nature of GPR40-CGA and GPR43-CGA interaction and also provided information about the amino acid residues involved in binding. Subsequently, in vitro studies demonstrated that CGA-induced secretion of GLP-1 via enhancing cAMP levels in GLUTag cells. Furthermore, in vivo experiments utilizing rotenone-induced mouse model of PD revealed a significant rise in plasma GLP-1 after CGA administration (50 mg/kg, orally for 13 weeks) with concomitant increase in colonic GPR-40 and GPR-43 mRNA expression. CGA treatment also prevented rotenone-induced motor and cognitive impairments and significantly restored the rotenone-induced oxidative stress. Meanwhile, western blot results confirmed that CGA treatment downregulated rotenone-induced phosphorylated alpha-synuclein levels by upregulating PI3K/AKT signaling and inactivating GSK-3ß through the release of GLP-1. CGA treatment ameliorated rotenone-induced dopaminergic nerve degeneration and alpha-synuclein accumulation in substantia nigra and augmented mean density of dopaminergic nerve fibers in striatum. These findings demonstrated novel biological function of CGA as a GLP-1 secretagogue. An increase in endogenous GLP-1 may render neuroprotection against a rotenone mouse model of PD and has the potential to be used as a neuroprotective agent in management of PD.


Assuntos
Ácido Clorogênico , Peptídeo 1 Semelhante ao Glucagon , Fármacos Neuroprotetores , Doença de Parkinson , Aminoácidos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Café/química , Neurônios Dopaminérgicos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicogênio Sintase Quinase 3 beta , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro , Rotenona/toxicidade , Secretagogos/farmacologia , alfa-Sinucleína/metabolismo
2.
Front Pharmacol ; 12: 746729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721035

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA