Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J King Saud Univ Sci ; 34(3): 101826, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35035181

RESUMO

Severe acute respiratory syndrome coronavirus disease (SARS-CoV-2) induced coronavirus disease 2019 (COVID-19) pandemic is the present worldwide health emergency. The global scientific community faces a significant challenge in developing targeted therapies to combat the SARS-CoV-2 infection. Computational approaches have been critical for identifying potential SARS-CoV-2 inhibitors in the face of limited resources and in this time of crisis. Main protease (Mpro) is an intriguing drug target because it processes the polyproteins required for SARS-CoV-2 replication. The application of Ayurvedic knowledge from traditional Indian systems of medicine may be a promising strategy to develop potential inhibitor for different target proteins of SARS-CoV-2. With this endeavor, we docked bioactive molecules from Triphala, an Ayurvedic formulation, against Mpro followed by molecular dynamics (MD) simulation (100 ns) to investigate their inhibitory potential against SARS-CoV-2. The top four best docked molecules (terflavin A, chebulagic acid, chebulinic acid, and corilagin) were selected for MD simulation study and the results obtained were compared to native ligand X77. From docking and MD simulation studies, the selected molecules showed promising binding affinity with the formation of stable complexes at the active binding pocket of Mpro and exhibited negative binding energy during MM-PBSA calculations, indication their strong binding affinity with the target protein. The identified bioactive molecules were further analyzed for drug-likeness by Lipinski's filter, ADMET and toxicity studies. Computational (in silico) investigations identified terflavin A, chebulagic acid, chebulinic acid, and corilagin from Triphala formulation as promising inhibitors of SARS-CoV-2 Mpro, suggesting experimental (in vitro/in vivo) studies to further explore their inhibitory mechanisms.

2.
Molecules ; 26(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885754

RESUMO

Chalcones are secondary metabolites belonging to the flavonoid (C6-C3-C6 system) family that are ubiquitous in edible and medicinal plants, and they are bioprecursors of plant flavonoids. Chalcones and their natural derivatives are important intermediates of the flavonoid biosynthetic pathway. Plants containing chalcones have been used in traditional medicines since antiquity. Chalcones are basically α,ß-unsaturated ketones that exert great diversity in pharmacological activities such as antioxidant, anticancer, antimicrobial, antiviral, antitubercular, antiplasmodial, antileishmanial, immunosuppressive, anti-inflammatory, and so on. This review provides an insight into the chemistry, biosynthesis, and occurrence of chalcones from natural sources, particularly dietary and medicinal plants. Furthermore, the pharmacological, pharmacokinetics, and toxicological aspects of naturally occurring chalcone derivatives are also discussed herein. In view of having tremendous pharmacological potential, chalcone scaffolds/chalcone derivatives and bioflavonoids after subtle chemical modification could serve as a reliable platform for natural products-based drug discovery toward promising drug lead molecules/drug candidates.


Assuntos
Chalcona/metabolismo , Flavonoides/química , Plantas Comestíveis/química , Plantas Medicinais/química , Chalcona/química , Chalcona/farmacocinética , Chalcona/uso terapêutico , Flavonoides/biossíntese , Flavonoides/farmacocinética , Flavonoides/uso terapêutico , Humanos , Alicerces Teciduais/química
3.
ACS Omega ; 6(43): 28630-28641, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746558

RESUMO

Naringin (NAR), a naturally occurring essential flavonoid, present in grapefruit and Chinese herbal medicines, creates great interest in researchers due to its diverse biological and pharmacological activities. However, further development of NAR is hindered due to its poor water solubility and dissolution rates in GIT. To address these limitations, in this study, we report polymeric nanoparticles (NPs) of NAR (NAR-PLGA-NPs) for enhancing the oral NAR efficiency, with a biodegradable polymer (PLGA) to improve its absorption and bioavailability. NAR-PLGA-NPs were fabricated by a modified solvent emulsification-evaporation technique. Physicochemical properties were evaluated by SEM, particle size distribution, entrapment efficiency, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). In vitro drug release and ex vivo permeation studies were carried out in phosphate buffer (pH 6.8) for 24 h. Furthermore, in vivo anti-arthritic studies were performed on a mouse model, and the results were compared with free NAR. The modulation of inflammatory mediators was also evidently supported by docking studies. Optimized nanoformulation FN4 (NAR-PLGA-NPs) prepared with acetone-ethanol (2:1) as a solvent system in a combination of stabilizers, i.e., poloxamer-188 and sodium deoxylate (1:1), along with 2% PVA solution, was prepared. From size characterization studies, it was observed that nanoformulations possessed a low particle size (179.7 ± 2.05 nm), a low polydispersity index (0.206 ± 0.001), and a negative zeta potential (-9.18 ± 0.78 mV) with a maximum entrapment efficiency (74 ± 3.61%). The drug release followed a Korsmeyer-Peppas release kinetic model (anomalous non-Fickian diffusion), providing greater NAR release after lyophilization (82.11 ± 3.65%) drug release in pH 6.8 phosphate buffer for 24 h. Ex vivo permeation analysis through an isolated goat intestinal membrane revealed 80.02 ± 3.69% drug release in 24 h. Encapsulation of a drug into PLGA is well described by the results of FTIR, DSC, and XRD. Finally, the therapeutic efficacy of optimized FN4 (NAR-PLGA-NPs) and its possible application on RA were further confirmed in a Freund's complete adjuvant-induced rat arthritic model as against free NAR at a dose of 20 mg/kg body wt. Our findings demonstrate that sustained action of NAR from optimized FN4 NPs with a rate-controlling polymeric carrier system exhibited prolonged circulation time and reduced arthritic inflammation, hence indicating the possibility as a novel strategy to secure the unpropitious biological interactions of hydrophobic NAR in a gastric environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA