Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 14(4)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35215434

RESUMO

Trigonella foenum-graecum L. (fenugreek), a member of the legume family (Fabaceae), is a promising source of bioactive phytochemicals, which explains its traditional use for a variety of metabolic disorders including cancer. The current study aimed to evaluate extracts of fenugreek seeds and sprouts, and some of their constituents, to compare their cytotoxic and antiproliferative activities in MCF-7 breast cancer cells. The extracts were chemically characterised using high-resolution accurate mass liquid chromatography-mass spectrometry to reveal the detection of compounds assigned as flavone C-glycosides including those derived from apigenin and luteolin, in addition to isoflavones. Five different flavones or their glycosides (apigenin, vicenin-2, vitexin, luteolin and orientin) and two isoflavones (daidzein and formononetin) were quantified in the fenugreek extracts. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay using MCF-7 cells treated with fenugreek methanolic extracts showed dose- and time-dependent effects on cell viability. The MCF-7 cancer cells treated with the fenugreek methanolic extracts also displayed increased relative mitochondrial DNA damage as well as suppressed metastasis and proliferation. This study demonstrates the potential anti-cancer effects of fenugreek seeds and sprouts and reveals fenugreek sprouts as an untapped resource for bioactive compounds.


Assuntos
Neoplasias da Mama , Trigonella , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Células MCF-7 , Extratos Vegetais/química , Sementes/química , Trigonella/química
2.
Food Chem ; 335: 127671, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32745843

RESUMO

Iron deficiency anaemia (IDA) is a common nutritional disorder worldwide. Sustainable food-based approaches are being advocated to use high and bioavailable dietary iron sources to prevent iron deficiency. The study investigated the bioaccessibility and bioavailability of iron from some plant products. Total iron levels in the samples were measured by inductively coupled plasma optical emission spectrometry (ICP-OES). Fractionation of the iron from the digested extracts was carried out by centrifugation and ultrafiltration. Iron bioavailability was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin in Caco-2 cells. The highest amount of bioaccessible iron was obtained from moringa leaves (9.88% ± 0.45 and 8.44 ± 0.01 mg/100 g), but the highest percentage bioavailability was from baobab fruit pulp (99.7% ± 0.13 and 1.74 ± 0.01 mg/100 g) respectively. All the plant products, except for baobab, significantly inhibited iron uptake from FeSO4 and FAC, with fenugreek sprout being the most inhibitory.


Assuntos
Adansonia/química , Ferro da Dieta/farmacocinética , Moringa/química , Trigonella/química , Disponibilidade Biológica , Células CACO-2 , Digestão , Ferritinas/metabolismo , Frutas/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Folhas de Planta/química
3.
FASEB J ; 34(8): 9995-10010, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32564472

RESUMO

Tea polyphenolics have been suggested to possess blood glucose lowering properties by inhibiting sugar transporters in the small intestine and improving insulin sensitivity. In this report, we studied the effects of teas and tea catechins on the small intestinal sugar transporters, SGLT1 and GLUTs (GLUT1, 2 and 5). Green tea extract (GT), oolong tea extract (OT), and black tea extract (BT) inhibited glucose uptake into the intestinal Caco-2 cells with GT being the most potent inhibitor (IC50 : 0.077 mg/mL), followed by OT (IC50 : 0.136 mg/mL) and BT (IC50 : 0.56 mg/mL). GT and OT inhibition of glucose uptake was partial non-competitive, with an inhibitor constant (Ki ) = 0.0317 and 0.0571 mg/mL, respectively, whereas BT was pure non-competitive, Ki  = 0.36 mg/mL. Oocytes injected to express small intestinal GLUTs were inhibited by teas, but SGLT1 was not. Furthermore, catechins present in teas were the predominant inhibitor of glucose uptake into Caco-2 cells, and gallated catechins the most potent: CG > ECG > EGCG ≥ GCG when compared to the non-gallated catechins (C, EC, GC, and EGC). In Caco-2 cells, individual tea catechins reduced the SGLT1 gene, but not protein expression levels. In contrast, GLUT2 gene and protein expression levels were reduced after 2 hours exposure to catechins but increased after 24 hours. These in vitro studies suggest teas containing catechins may be useful dietary supplements capable of blunting postprandial glycaemia in humans, including those with or at risk to Type 2 diabetes mellitus.


Assuntos
Antioxidantes/farmacologia , Catequina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Transportador de Glucose Tipo 2/antagonistas & inibidores , Extratos Vegetais/farmacologia , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Chá/química , Animais , Células CACO-2 , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Glucose/metabolismo , Humanos , Oócitos/efeitos dos fármacos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Xenopus laevis
4.
Nutrients ; 11(8)2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31412634

RESUMO

Iron and zinc are essential micronutrients required for growth and health. Deficiencies of these nutrients are highly prevalent among populations, but can be alleviated by supplementation and food fortification. Cross-sectional studies in humans showed positive association of serum zinc levels with hemoglobin and markers of iron status. Dietary restriction of zinc or intestinal specific conditional knock out of ZIP4 (SLC39A4), an intestinal zinc transporter, in experimental animals demonstrated iron deficiency anemia and tissue iron accumulation. Similarly, increased iron accumulation has been observed in cultured cells exposed to zinc deficient media. These results together suggest a potential role of zinc in modulating intestinal iron absorption and mobilization from tissues. Studies in intestinal cell culture models demonstrate that zinc induces iron uptake and transcellular transport via induction of divalent metal iron transporter-1 (DMT1) and ferroportin (FPN1) expression, respectively. It is interesting to note that intestinal cells are exposed to very high levels of zinc through pancreatic secretions, which is a major route of zinc excretion from the body. Therefore, zinc appears to be modulating the iron metabolism possibly via regulating the DMT1 and FPN1 levels. Herein we critically reviewed the available evidence to hypothesize novel mechanism of Zinc-DMT1/FPN1 axis in regulating intestinal iron absorption and tissue iron accumulation to facilitate future research aimed at understanding the yet elusive mechanisms of iron and zinc interactions.


Assuntos
Absorção Intestinal , Eliminação Intestinal , Mucosa Intestinal/metabolismo , Ferro da Dieta/metabolismo , Zinco/metabolismo , Anemia Ferropriva/metabolismo , Anemia Ferropriva/fisiopatologia , Animais , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Humanos , Mucosa Intestinal/fisiopatologia , Suco Pancreático/metabolismo , Zinco/deficiência
5.
PLoS One ; 8(11): e78932, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236070

RESUMO

Polyphenols contained within plant tissues are consumed in significant amounts in the human diet and are known to influence a number of biological processes. This study investigated the effects of an anthocyanin-rich berry-extract on glucose uptake by human intestinal Caco-2 cells. Acute exposure (15 min) to berry extract (0.125%, w/v) significantly decreased both sodium-dependent (Total uptake) and sodium-independent (facilitated uptake) ³H-D-glucose uptake. In longer-term studies, SGLT1 mRNA and GLUT2 mRNA expression were reduced significantly. Polyphenols are known to interact directly with glucose transporters to regulate the rate of glucose absorption. Our in vitro data support this mechanism and also suggest that berry flavonoids may modulate post-prandial glycaemia by decreasing glucose transporter expression. Further studies are warranted to investigate the longer term effects of berry flavonoids on the management of glycaemia in human volunteers.


Assuntos
Antocianinas/farmacologia , Frutas/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Transportador 1 de Glucose-Sódio/metabolismo , Transporte Biológico , Células CACO-2 , Regulação para Baixo , Avaliação Pré-Clínica de Medicamentos , Fragaria/química , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Humanos , Sambucus/química , Transportador 1 de Glucose-Sódio/genética , Vaccinium/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA