Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 158: 589-601, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750341

RESUMO

In present investigation, two glucose based smart tumor-targeted drug delivery systems coupled with enzyme-sensitive release strategy are introduced. Magnetic nanoparticles (Fe3O4) were grafted with carboxymethyl chitosan (CS) and ß-cyclodextrin (ß-CD) as carriers. Prodigiosin (PG) was used as the model anti-tumor drug, targeting aggressive tumor cells. The morphology, properties and composition and grafting process were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), vibration sample magnetometer (VSM), X-ray diffraction (XRD) analysis. The results revealed that the core crystal size of the nanoparticles synthesized were 14.2±2.1 and 9.8±1.4nm for ß-CD and CS-MNPs respectively when measured using TEM; while dynamic light scattering (DLS) gave diameters of 121.1 and 38.2nm. The saturation magnetization (Ms) of bare magnetic nanoparticles is 50.10emucm-3, while modification with ß-CD and CS gave values of 37.48 and 65.01emucm-3, respectively. The anticancer compound, prodigiosin (PG) was loaded into the NPs with an encapsulation efficiency of approximately 81% for the ß-CD-MNPs, and 92% for the CS-MNPs. This translates to a drug loading capacity of 56.17 and 59.17mg/100mg MNPs, respectively. Measurement of in vitro release of prodigiosin from the loaded nanocarriers in the presence of the hydrolytic enzymes, alpha-amylase and chitosanase showed that 58.1 and 44.6% of the drug was released after one-hour of incubation. Cytotoxicity studies of PG-loaded nanocarriers on two cancer cell lines, MCF-7 and HepG2, and on a non-cancerous control, NIH/3T3 cells, revealed that the drug loaded nanoparticles had greater efficacy on the cancer cell lines. The selective index (SI) for free PG on MCF-7 and HepG2 cells was 1.54 and 4.42 respectively. This parameter was reduced for PG-loaded ß-CD-MNPs to 1.27 and 1.85, while the SI for CS-MNPs improved considerably to 7.03 on MCF-7 cells. Complementary studies by fluorescence and confocal microscopy and flow cytometry confirm specific targeting of the nanocarriers to the cancer cells. The results suggest that CS-MNPs have higher potency and are better able to target the prodigiosin toxicity effect on cancerous cells than ß-CD-MNPs.


Assuntos
Antineoplásicos/química , Quitosana/química , beta-Ciclodextrinas/química , Sistemas de Liberação de Medicamentos/métodos , Lisossomos/química , Nanopartículas de Magnetita/química , Microscopia Eletrônica de Transmissão , Prodigiosina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Colloids Surf B Biointerfaces ; 111: 15-23, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23787277

RESUMO

Cataract surgery, while the most common surgical procedure performed, leads to posterior capsule opacification in approximately 30% of cases. Transforming growth factor beta 2 (TGF-ß2) and matrix metalloproteinases (MMPs) have been shown to play important roles in the cellular processes leading to posterior capsule opacification. Delivery of inhibitors to MMPs may have the potential to inhibit the initial cascade of events that lead to PCO. However, delivery of these molecules via tethering has proven difficult. In this work, sulfadiazine was tethered to polydimethylsiloxane (PDMS) via a polyethylene glycol (PEG) spacer as a potential MMPI mimic. Surface characterization using a variety of methods demonstrated successful modification with the antibiotic. The surfaces were examined with lens epithelial cells to determine their effect on these cellular processes, including cell transdifferentiation and production of extracellular matrix components. The presence of TGF-ß2 in the cell culture media was found to stimulate the production of ECM components such as collagen, fibronectin, and laminin, as well as alpha smooth muscle actin (α-SMA), and the migration marker Rho by HLE-B3 and FHL124 cells. In all cases, these effects were decreased but not completely eradicated by the presence of sulfadiazine on the PDMS surfaces. While the level of inhibition necessary for inhibition of PCO in vivo is unknown, these results suggest that IOL surface modification with sulfadiazine has the potential to reduce cellular changes associated with PCO. Furthermore, the results demonstrate for the first time that changes consistent with inhibition of fibrosis may be elicited by surfaces modified with sulfadiazine.


Assuntos
Opacificação da Cápsula/tratamento farmacológico , Dimetilpolisiloxanos/química , Sulfadiazina/uso terapêutico , Actinas/metabolismo , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Fibronectinas/metabolismo , Humanos , Lactente , Laminina/metabolismo , Cristalino/efeitos dos fármacos , Cristalino/patologia , Espectrometria de Massas , Espectroscopia Fotoeletrônica , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfadiazina/farmacologia , Propriedades de Superfície , Água/química , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA