Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 240(6): 2372-2385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837235

RESUMO

Glutamate decarboxylase (GAD) is a Ca2+ -calmodulin-activated, cytosolic enzyme that produces γ-aminobutyrate (GABA) as the committed step of the GABA shunt. This pathway bypasses the 2-oxoglutarate to succinate reactions of the tricarboxylic acid (TCA) cycle. GABA also accumulates during many plant stresses. We tested the hypothesis that AtGAD1 (At5G17330) facilitates Arabidopsis acclimation to Pi deprivation. Quantitative RT-PCR and immunoblotting revealed that AtGAD1 transcript and protein expression is primarily root-specific, but inducible at lower levels in shoots of Pi-deprived (-Pi) plants. Pi deprivation reduced levels of the 2-oxoglutarate dehydrogenase (2-OGDH) cofactor thiamine diphosphate (ThDP) in shoots and roots by > 50%. Growth of -Pi atgad1 T-DNA mutants was significantly attenuated relative to wild-type plants. This was accompanied by: (i) an > 60% increase in shoot and root GABA levels of -Pi wild-type, but not atgad1 plants, and (ii) markedly elevated anthocyanin and reduced free and total Pi levels in leaves of -Pi atgad1 plants. Treatment with 10 mM GABA reversed the deleterious development of -Pi atgad1 plants. Our results indicate that AtGAD1 mediates GABA shunt upregulation during Pi deprivation. This bypass is hypothesized to circumvent ThDP-limited 2-OGDH activity to facilitate TCA cycle flux and respiration by -Pi Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fósforo/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aclimatação , Aminobutiratos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Raízes de Plantas/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Sci Rep ; 6: 35115, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725774

RESUMO

Polyamines represent a potential source of 4-aminobutyrate (GABA) in plants exposed to abiotic stress. Terminal catabolism of putrescine in Arabidopsis thaliana involves amine oxidase and the production of 4-aminobutanal, which is a substrate for NAD+-dependent aminoaldehyde dehydrogenase (AMADH). Here, two AMADH homologs were chosen (AtALDH10A8 and AtALDH10A9) as candidates for encoding 4-aminobutanal dehydrogenase activity for GABA synthesis. The two genes were cloned and soluble recombinant proteins were produced in Escherichia coli. The pH optima for activity and catalytic efficiency of recombinant AtALDH10A8 with 3-aminopropanal as substrate was 10.5 and 8.5, respectively, whereas the optima for AtALDH10A9 were approximately 9.5. Maximal activity and catalytic efficiency were obtained with NAD+ and 3-aminopropanal, followed by 4-aminobutanal; negligible activity was obtained with betaine aldehyde. NAD+ reduction was accompanied by the production of GABA and ß-alanine, respectively, with 4-aminobutanal and 3-aminopropanal as substrates. Transient co-expression systems using Arabidopsis cell suspension protoplasts or onion epidermal cells and several organelle markers revealed that AtALDH10A9 was peroxisomal, but AtALDH10A8 was cytosolic, although the N-terminal 140 amino acid sequence of AtALDH10A8 localized to the plastid. Root growth of single loss-of-function mutants was more sensitive to salinity than wild-type plants, and this was accompanied by reduced GABA accumulation.


Assuntos
Aldeído Desidrogenase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Putrescina/metabolismo , Tolerância ao Sal , Ácido gama-Aminobutírico/metabolismo , Aldeído Desidrogenase/genética , Arabidopsis/genética , Células Cultivadas , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Concentração de Íons de Hidrogênio , Cebolas , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Sais/metabolismo , Especificidade por Substrato
3.
Plant Cell Physiol ; 56(1): 137-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378687

RESUMO

4-Aminobutyrate (GABA) accumulates in apple fruit during controlled atmosphere storage. A potential source of GABA is the polyamine putrescine, which can be oxidized via copper-containing amine oxidase (CuAO), resulting in the production 4-aminobutanal/Δ(1)-pyrroline, with the consumption of O2 and release of H2O2 and ammonia. Five putative CuAO genes (MdAO genes) were cloned from apple (Malus domestica Borkh. cv. Empire) fruit, and the deduced amino acid sequences found to contain the active sites typically conserved in CuAOs. Genes encoding two of these enzymes, MdAO1 and MdAO2, were highly expressed in apple fruit and selected for further analysis. Amino acid sequence analysis predicted the presence of a C-terminal peroxisomal targeting signal 1 tripeptide in MdAO1 and an N-terminal signal peptide and N-glycosylation site in MdAO2. Transient expression of green fluorescent fusion proteins in Arabidopsis protoplasts or onion epidermal cells revealed a peroxisomal localization for MdAO1 and an extracellular localization for MdAO2. The enzymatic activities of purified recombinant MdAO1 and MdAO2 were measured continuously as H2O2 production using a coupled reaction. MdAO1 did not use monoamines or polyamines and displayed high catalytic efficiency for 1,3-diaminopropane, putrescine and cadaverine, whereas MdAO2 exclusively utilized aliphatic and aromatic monoamines, including 2-phenylethylamine and tyramine. Together, these results indicate that MdAO1 may contribute to GABA production via putrescine oxidation in the peroxisome of apple fruit under controlled atmosphere conditions. MdAO2 seems to be involved in deamination of 2-phenylethylamine, which is a step in the biosynthesis of 2-phenylethanol, a contributor to fruit flavor and flower fragrance.


Assuntos
Amina Oxidase (contendo Cobre)/metabolismo , Monoaminas Biogênicas/metabolismo , Diaminas/metabolismo , Frutas/enzimologia , Malus/enzimologia , Amina Oxidase (contendo Cobre)/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/enzimologia , Arabidopsis/genética , Vias Biossintéticas , Espaço Extracelular/enzimologia , Frutas/citologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Isoenzimas , Malus/genética , Dados de Sequência Molecular , Cebolas/citologia , Cebolas/enzimologia , Cebolas/genética , Especificidade de Órgãos , Oxirredução , Peroxissomos/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Ácido gama-Aminobutírico/metabolismo
4.
Genome ; 54(12): 993-1004, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22098475

RESUMO

Production of high-lutein maize grain is of particular interest as a value-added feed source to produce high-lutein eggs. In this paper, it is demonstrated that heterosis for total carotenoid concentration and for the ratio of lutein to zeaxanthin (L:Z ratio), or profile type, exists infrequently in yellow dent crosses. However, yellow dent inbred maize lines A619 and CG102, both possessing high-lutein profiles, produce F1 seed with a classic overdominant expression of lutein levels (i.e., 49 µg/g dry weight (DW) above the high-parent value). Reciprocal crosses of A619 and CG102 with one another and with two high-zeaxanthin (i.e., low lutein), high-carotenoid lines both suggest that the A619 and CG102 high-lutein phenotypes are achieved by different and complementary genotypes. The contribution of CG102 to the heterotic response was examined using a QTL-based approach that involved phenotyping the mapping population in a testcross to A619. Significant QTL were found at loci known to be involved in the carotenoid pathway but also at loci proximate to, but separate from, known carotenoid pathway steps. Exploiting an overdominant heterotic response for lutein and total carotenoids should be given strong consideration as a viable method of producing high-carotenoid hybrid maize lines.


Assuntos
Carotenoides/metabolismo , Quimera/genética , Vigor Híbrido , Zea mays/genética , Carotenoides/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Cruzamentos Genéticos , Marcadores Genéticos , Genótipo , Endogamia , Locos de Características Quantitativas , Sementes/genética , Sementes/metabolismo , Xantofilas/genética , Xantofilas/metabolismo , Zea mays/metabolismo , Zeaxantinas
5.
J Agric Food Chem ; 58(14): 8286-92, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20593834

RESUMO

High carotenoid maize is an ideal source of high value dietary carotenoids, especially lutein and zeaxanthin, in human and animal feed and has been proposed as a feedstock for high carotenoid egg production. A modified analytical method was demonstrated to have reliability, reproducibility, and improved run-time and separation of xanthophylls. This method was used to confirm the localization of carotenoids in endosperm and to determine the effects of drying and storage on carotenoid levels in maize grain. A preliminary trial using room temperature drying indicated that while carotenoid profiles remain stable during storage, carotenoid levels decrease significantly from initial levels between 3 and 6 months of storage, but then remain stable for another year. A more rigorous trial using three drying and storage regimes (freeze-drying and storage at -80 degrees C; room temperature drying and storage; 90 degrees C drying and room temperature storage) indicated that extreme caution is needed to maintain carotenoid levels in maize during handling and storage, but in situations where freeze-drying is not possible, high heat drying is no more detrimental than low heat drying.


Assuntos
Carotenoides/análise , Manipulação de Alimentos/métodos , Extratos Vegetais/análise , Zea mays/química , Liofilização , Temperatura
6.
J Chem Ecol ; 29(9): 2177-82, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14584684

RESUMO

Gamma-aminobutyrate (GABA) is a ubiquitous four-carbon, non-protein amino acid synthesized by glutamate decarboxylase. Previous research suggests that the endogenous synthesis of GABA, a naturally occurring inhibitory neurotransmitter at neuromuscular junctions, serves as a plant resistance mechanism against invertebrate pests. In this study, two homozygous transgenic tobacco lines constitutively overexpressing a single copy of a full-length chimeric glutamate decarboxylase cDNA and possessing enhanced capacity for GABA accumulation (GAD plants), a homozygous transgenic line lacking the gene insert, and wild-type tobacco were employed. Tobacco budworm larvae were presented with plant attached wild type and transgenic leaves for 4 hr in a feeding preference study. Larvae consumed six to twelve times more leaf tissue from wild-type plants than from GAD plants. These results suggest that leaf GABA accumulation, which is known to occur in response to insect larval walking and feeding, represents a rapidly deployed local resistance mechanism.


Assuntos
Regulação da Expressão Gênica , Glutamato Descarboxilase/biossíntese , Glutamato Descarboxilase/farmacologia , Controle de Insetos/métodos , Mariposas/fisiologia , Nicotiana/química , Nicotiana/genética , Plantas Geneticamente Modificadas , Ácido gama-Aminobutírico/metabolismo , Animais , Bioensaio , DNA Complementar , Comportamento Alimentar , Glutamato Descarboxilase/genética , Larva , Plantas Comestíveis/química
7.
J Biol Chem ; 278(42): 41552-6, 2003 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12882961

RESUMO

In plants, gamma-aminobutyrate (GABA), a non-protein amino acid, accumulates rapidly in response to a variety of abiotic stresses such as oxygen deficiency. Under normoxia, GABA is catabolized to succinic semialdehyde and then to succinate with the latter reaction being catalyzed by succinic semialdehyde dehydrogenase (SSADH). Complementation of an SSADH-deficient yeast mutant with an Arabidopsis cDNA library enabled the identification of a novel cDNA (designated as AtGH-BDH for Arabidopsis thaliana gamma-hydroxybutyrate dehydrogenase), which encodes a 289-amino acid polypeptide containing an NADP-binding domain. Constitutive expression of AtGHBDH in the mutant yeast enabled growth on 20 mm GABA and significantly enhanced the cellular concentrations of gamma-hydroxybutyrate, the product of the GHDBH reaction. These data confirm that the cDNA encodes a polypeptide with GHBDH activity. Arabidopsis plants subjected to flooding-induced oxygen deficiency for up to 4 h possessed elevated concentrations of gamma-hydroxybutyrate as well as GABA and alanine. RNA expression analysis revealed that GHBDH transcription was not up-regulated by oxygen deficiency. These findings suggest that GHBDH activity is regulated by the supply of succinic semialdehyde or by redox balance. It is proposed that GHBDH and SSADH activities in plants are regulated in a complementary fashion and that GHBDH and gamma-hydroxybutyrate function in oxidative stress tolerance.


Assuntos
Arabidopsis/enzimologia , Hidroxibutirato Desidrogenase/química , Hidroxibutirato Desidrogenase/metabolismo , Alanina/química , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , DNA Complementar/metabolismo , Teste de Complementação Genética , Hidroxibutirato Desidrogenase/genética , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Estresse Oxidativo , Oxigênio/metabolismo , Peptídeos/química , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Succinato-Semialdeído Desidrogenase , Fatores de Tempo , Regulação para Cima , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA