Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004641

RESUMO

Intake of whole grain foods is associated with improving metabolic profile compared to refined grain products, but the underlying mechanism remains unclear. The present study examined the effects of brown rice (BRR) or germinated brown rice (GBR) supplementation on fecal short-chain fatty acids (SCFAs), and relationship with gut microbiota, metabolism and inflammation in high fat (HF)-diet-fed mice. The results demonstrated that an HF diet supplemented with BRR or GBR comparably increased the abundance of fecal isobutyric acid compared to that in mice receiving HF+white rice (WHR) diet (p < 0.01). The abundance of valeric acid in HF+GBR-diet-fed mice was higher than those receiving HF+WHR diet (p < 0.05). The abundances of fecal isobutyric acid negatively correlated with fasting plasma glucose, insulin, cholesterol, triglycerides, tumor necrosis factor-α, plasminogen activator inhibit-1, monocyte chemotactic protein-1 and homeostatic model assessment of insulin resistance (p < 0.01). The abundance of valeric acids negatively correlated with insulin resistance (p < 0.05). The abundances of isobutyric acid positively correlated with Lactobacillus, but negatively correlated with Dubosiella genus bacteria (p < 0.05). The findings demonstrated that the increases in SCFAs in the feces of BRR and GBR-treated mice were associated with improvements in gut microbiome, metabolic and inflammatory profile, which may contribute to the antidiabetic and anti-inflammatory effects of the whole grains in HF-diet-fed mice.

2.
J Nutr Biochem ; 111: 109201, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332818

RESUMO

Previous studies demonstrated that oral administration of Saskatoon berry powder (SBp) reduced fasting plasma glucose (FPG), insulin resistance, lipids, and inflammatory markers in diet-induced insulin resistant rodents. Mechanism for the beneficial effects of SB remains unclear. The present study examined the effects of high fat-high sucrose (HFHS) diet supplemented with or without 5% SBp, cyanidin-3-glucoside (C3G, an anthocyanin rich in SBp) at a dosage of C3G in 5% SBp, or equimolar concentration of protocatechuic acid (PCA, a relatively stable metabolite of C3G) for 11 weeks on FPG, cholesterol, triglycerides, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), circulatory inflammatory markers, fecal microbiota, and short chain fatty acids in mice. HFHS diet significantly enhanced FPG, insulin, HOMA-IR, lipids and inflammatory markers, but reduced the abundance of fecal Bacteroidetes, Muribaculaceae and propionate compared to low fat diet. Supplementation of SBp, C3G or PCA significantly attenuated HFHS diet induced metabolic and inflammatory markers, and increased the abundances of fecal Muribaculaceae and propionate compared to HFHS diet alone. The abundances of fecal Muribaculaceae negatively correlated with FPG, lipids, HOMA-IR and inflammatory markers in the mice. The abundances of fecal propionate positively correlated with fecal Muribaculaceae and negatively correlated with the metabolic and inflammatory markers. The findings suggest that C3G in SBp and PCA contribute to the metabolic and anti-inflammatory effect of SBp in mice. The increases in fecal Muribaculaceae and propionate may play important regulatory roles in the anti-diabetic and anti-inflammatory benefits of SBp, C3G, and PCA in mice.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Camundongos , Animais , Insulina , Antocianinas/farmacologia , Frutas/metabolismo , Propionatos/farmacologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/farmacologia , Camundongos Endogâmicos C57BL
3.
J Food Sci ; 87(3): 1009-1019, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35122243

RESUMO

Biofortification using inorganic selenium has become an effective strategy to enhance selenium content in crops. In the present study, the effects of selenium biofortification on the chemical composition and antioxidant capacity of black soybean (BS) during germination were studied. The contents of selenium, total sugar, vitamin C, γ-aminobutyric acid, total polyphenols, and total flavonoids in selenium biofortified germinated black soybeans (GBS-Se) significantly increased compared to germinated black soybeans (GBS). However, the contents of soluble protein, fat, and reducing sugar were decreased, while fatty acid composition was not significantly different between GBS and BS. HPLC analysis showed that 12 phenolic acids of all samples, which mainly existed in free forms. Their contents increased at low concentration of selenium and decreased along with the rise of selenium concentrations. The antioxidant activity of GBS-Se as analyzed by Pearson correlation analysis positively correlated with the accumulation of phenolic substances. Principal component analysis (PCA) showed that GBS and GBS-Se were significantly different from BS. Moreover, the physicochemical indexes of GBS showed regularly changes with increasing selenium content, and those of GBS-Se50 and GBS-Se75 were significantly different from GBS. The results provide a systematic evaluation on the effect of selenium fortification on the germination of seeds and useful information for the development of Se-enriched functional foods. PRACTICAL APPLICATION: The organic selenium black soybean (BS) produced by the germination method can be directly processed and eaten to improve human health. In addition, complexes of organic selenium, vitamin C, and γ-aminobutyric acid of germinated BS can be developed into functional substances and applied to food or health products as functional ingredient and/or natural antioxidant supplements.


Assuntos
Fabaceae , Selênio , Antioxidantes/química , Biofortificação/métodos , Fabaceae/química , Humanos , Sementes/química , Selênio/análise , Glycine max/química
4.
J Nutr Biochem ; 95: 108778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34004342

RESUMO

Non-alcoholic fatty liver disease is a common metabolic disorder associated with insulin resistance and lacks a specific treatment. Our previous studies demonstrated that freeze-dried Saskatoon berry powder (SBp) reduced high fat-high sucrose (HFHS) diet-induced hyperglycemia and insulin resistance in mice. The present study examined the effect of SBp and one of its active components, cyanidin-3-glucoside (C3G), on hepatic steatosis in mice fed with HFHS diet for 10 weeks. HFHS diet significantly increased fasting plasma glucose, cholesterol, triglycerides, insulin resistance, inflammatory markers (tumor necrosis factor-α, monocyte chemotactic protein-1, plasminogen activator inbitor-1), alanine aminotransferase activity, and monocyte adhesion compared to control diet. In the liver, HFHS diet increased steatosis, lipid accumulation, collagen deposition, and the abundance of patatin-like phospholipase domain-containing 3, CCAAT-enhancer-binding protein homologous protein, toll-like receptor-4, and macrophage marker. Supplementation with SBp (5%) or C3G in an amount corresponding to that in 5% SBp to HFHS diet had similar effects to reduced fasting plasma glucose, liver steatosis, enzyme activity, lipid, collagen and macrophage deposition, hyperglycemia, hyperlipidemia, insulin resistance, monocyte adhesion, markers related to liver steatosis, inflammation, oxidative or endoplasmic reticulum stress in the peripheral circulation and/or liver compared to mice fed with HFHS diet alone. No significant difference in the studied variables was detected between mice treated with HFHS+SBp and C3G diet. The results suggest that SBp or C3G administration attenuates HFHS diet-induced liver steatosis in addition to insulin resistance and chronic inflammation in mice. C3G may contribute to the beneficial effects of SBp.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Suplementos Nutricionais , Frutas/química , Obesidade/induzido quimicamente , Rosaceae/química , Adolescente , Animais , Glicemia , Sacarose Alimentar/administração & dosagem , Homeostase , Humanos , Insulina/genética , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica , Pós
5.
J Diabetes Res ; 2020: 3901636, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509879

RESUMO

In response to the recent rise in numbers of diabetes patients, many treatments have been developed; but currently, oral antihyperglycemic agents and insulin are still the main clinical treatments. Since current drugs have limitations and harmful side effects, research in alternative treatments has been sought. This article reviews recent research updates of Saskatoon berries (SB), covering its background information, its main active ingredients, its structure, and its function. Flavonoid compounds in Saskatoon berries, in particular flavanol, anthocyanin, and proanthocyanin, possess anti-inflammatory, antitumor, and antidiabetes impacts. The current review synthesizes the latest research on the health benefits of Saskatoon berry in a variety of domains. With further research, SB has the potential to help treat and prevent diabetes in the future.


Assuntos
Frutas/química , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Rosaceae/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Saúde , Humanos , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Fitoterapia/tendências
6.
J Nutr Biochem ; 69: 130-138, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31078906

RESUMO

The present study examined the impact of Saskatoon berry powder (SBp) on insulin resistance, inflammation and intestinal microbiota in diet-induced obese mice. Male C57 BL/6 J mice were fed control diet, high fat-high sucrose (HFHS) diet or HFHS+5% SBp (HFHS+B) diet for 15 weeks. The composition of fecal bacterial community was characterized using the Illumina sequencing of V4 region of 16S rRNA gene. HFHS diet increased body weight, fasting plasma glucose, cholesterol, triglycerides, insulin, homeostatic model assessment-insulin resistance, monocyte adhesion, tumor necrosis factor-α, plasminogen activator inhibitor-1, monocyte chemotactic protein-1, intracellular cell adhesion molecule-1, urokinase plasminogen activator and its receptor in plasma or aortae compared to the control diet. HFHS+B diet postponed the increase in body weight, suppressed HFHS diet-induced disorders in the metabolic and inflammatory variables. The ratio of Firmicutes/Bacteroidetes in the HFHS group was higher than that in the control group (P<.01), and that in the HFHS+B group was lower than that in the HFHS group (P<.05). The abundances of S24-7 family negatively correlated with body weight and tested metabolic or inflammatory variables. The results suggest that SBp attenuated HFHS diet-induced metabolic disorders and vascular inflammation in gut microbiota in mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Insulina , Obesidade/etiologia , Rosaceae/química , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Quimiocina CCL2/sangue , Suplementos Nutricionais , Ingestão de Alimentos/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Obesidade/dietoterapia , Obesidade/microbiologia , Pós , Serpina E2/sangue , Fator de Necrose Tumoral alfa/sangue
7.
J Nutr Biochem ; 33: 128-35, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27155919

RESUMO

Dietary modifications including healthy eating constitute one of the first line strategies for prevention and treatment of atherosclerotic cardiovascular diseases (CVD), including atherosclerosis. In this study, we assessed anti-atherogenic effects of a combination of wild rice and phytosterols in low-density lipoprotein receptor knockout (LDL-r-KO) mice. Male LDL-r-KO mice were divided into four groups and fed with: (1) control diet; (2) the control diet containing 60% (w/w) wild rice; (3) the control diet containing 2% (w/w) phytosterols; or (4) the control diet containing both wild rice and phytosterols for 20weeks. All diets were supplemented with 0.06% (w/w) dietary cholesterol. Blood samples, hearts, and feces were collected and used for biochemical and histological examination. Consumption of 60% (w/w) wild rice in combination with 2% (w/w) phytosterols significantly reduced the size and severity of atherosclerotic lesions in the aortic roots as compared to those in the control group. This effect was associated with significant reductions in plasma total, LDL and VLDL cholesterol concentrations as well as an increase in fecal cholesterol excretion. In conclusion, the dietary combination of wild rice and phytosterols prevents atherogenesis in this animal model. Further investigations are needed to understand mechanisms of action and potential clinical outcome of such dietary intervention.


Assuntos
Anticolesterolemiantes/uso terapêutico , Aterosclerose/prevenção & controle , Suplementos Nutricionais , Alimento Funcional , Fitosteróis/uso terapêutico , Poaceae , Sementes , Adiposidade , Animais , Anticolesterolemiantes/efeitos adversos , Aorta/patologia , Aterosclerose/sangue , Aterosclerose/metabolismo , Aterosclerose/patologia , Colesterol/análise , Colesterol/sangue , Colesterol na Dieta/efeitos adversos , Colesterol na Dieta/análise , Colesterol na Dieta/antagonistas & inibidores , LDL-Colesterol/antagonistas & inibidores , LDL-Colesterol/sangue , VLDL-Colesterol/antagonistas & inibidores , VLDL-Colesterol/sangue , Suplementos Nutricionais/efeitos adversos , Dislipidemias/sangue , Dislipidemias/metabolismo , Dislipidemias/patologia , Dislipidemias/prevenção & controle , Fezes/química , Masculino , Camundongos Knockout , Miocárdio/patologia , Fitosteróis/efeitos adversos , Receptores de LDL/genética , Receptores de LDL/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA