Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 131(5): 867-883, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976653

RESUMO

BACKGROUND AND AIMS: Artemisia is a mega-diverse genus consisting of ~400 species. Despite its medicinal importance and ecological significance, a well-resolved phylogeny for global Artemisia, a natural generic delimitation and infrageneric taxonomy remain missing, owing to the obstructions from limited taxon sampling and insufficient information on DNA markers. Its morphological characters, such as capitulum, life form and leaf, show marked variations and are widely used in its infrageneric taxonomy. However, their evolution within Artemisia is poorly understood. Here, we aimed to reconstruct a well-resolved phylogeny for global Artemisia via a phylogenomic approach, to infer the evolutionary patterns of its key morphological characters and to update its circumscription and infrageneric taxonomy. METHODS: We sampled 228 species (258 samples) of Artemisia and its allies from both fresh and herbarium collections, covering all the subgenera and its main geographical areas, and conducted a phylogenomic analysis based on nuclear single nucleotide polymorphisms (SNPs) obtained from genome skimming data. Based on the phylogenetic framework, we inferred the possible evolutionary patterns of six key morphological characters widely used in its previous taxonomy. KEY RESULTS: The genus Kaschgaria was revealed to be nested in Artemisia with strong support. A well-resolved phylogeny of Artemisia consisting of eight highly supported clades was recovered, two of which were identified for the first time. Most of the previously recognized subgenera were not supported as monophyletic. Evolutionary inferences based on the six morphological characters showed that different states of these characters originated independently more than once. CONCLUSIONS: The circumscription of Artemisia is enlarged to include the genus Kaschgaria. The morphological characters traditionally used for the infrageneric taxonomy of Artemisia do not match the new phylogenetic tree. They experienced a more complex evolutionary history than previously thought. We propose a revised infrageneric taxonomy of the newly circumscribed Artemisia, with eight recognized subgenera to accommodate the new results.


Assuntos
Artemisia , Filogenia , Artemisia/genética , Folhas de Planta , Núcleo Celular
2.
J Plant Physiol ; 196-197: 41-52, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27054772

RESUMO

Recently, an important topic of research has been how climate change is seriously threatening the sustainability of agricultural production. However, there is surprisingly little experimental data regarding how elevated temperature and CO2 will affect the growth of medicinal plants and production of bioactive compounds. Here, we comprehensively analyzed the effects of elevated CO2 and temperature on the photosynthetic process, biomass, total sugars, antioxidant compounds, antioxidant capacity, and bioactive compounds of Gynostemma pentaphyllum. Two different CO2 concentrations [360 and 720µmolmol(-1)] were imposed on plants grown at two different temperature regimes of 23/18 and 28/23°C (day/night) for 60days. Results show that elevated CO2 and temperature significantly increase the biomass, particularly in proportion to inflorescence total dry weight. The chlorophyll content in leaves increased under the elevated temperature and CO2. Further, electron transport rate (ETR), photochemical quenching (qP), actual photochemical quantum yield (Yield), instantaneous photosynthetic rate (Photo), transpiration rate (Trmmol) and stomatal conductance (Cond) also increased to different degrees under elevated CO2 and temperature. Moreover, elevated CO2 increased the level of total sugars and gypenoside A, but decreased the total antioxidant capacity and main antioxidant compounds in different organs of G. pentaphyllum. Accumulation of total phenolics and flavonoids also decreased in leaves, stems, and inflorescences under elevated CO2 and temperature. Overall, our data indicate that the predicted increase in atmospheric temperature and CO2 could improve the biomass of G. pentaphyllum, but they would reduce its health-promoting properties.


Assuntos
Dióxido de Carbono/metabolismo , Gynostemma/fisiologia , Temperatura Alta , Fotossíntese , Clorofila/metabolismo , Mudança Climática , Gynostemma/crescimento & desenvolvimento , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA