Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Scand J Immunol ; 99(5): e13356, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605549

RESUMO

In light of increasing resistance to PD1 antibody therapy among certain patient populations, there is a critical need for in-depth research. Our study assesses the synergistic effects of a MUC1 DNA vaccine and PD1 antibody for surmounting PD1 resistance, employing a murine CT26/MUC1 colon carcinoma model for this purpose. When given as a standalone treatment, PD1 antibodies showed no impact on tumour growth. Additionally, there was no change observed in the intra-tumoural T-cell ratios or in the functionality of T-cells. In contrast, the sole administration of a MUC1 DNA vaccine markedly boosted the cytotoxicity of CD8+ T cells by elevating IFN-γ and granzyme B production. Our compelling evidence highlights that combination therapy more effectively inhibited tumour growth and prolonged survival compared to either monotherapy, thus mitigating the limitations intrinsic to single-agent therapies. This enhanced efficacy was driven by a significant alteration in the tumour microenvironment, skewing it towards pro-immunogenic conditions. This assertion is backed by a raised CD8+/CD4+ T-cell ratio and a decrease in immunosuppressive MDSC and Treg cell populations. On the mechanistic front, the synergistic therapy amplified expression levels of CXCL13 in tumours, subsequently facilitating T-cell ingress into the tumour setting. In summary, our findings advocate for integrated therapy as a potent mechanism for surmounting PD1 antibody resistance, capitalizing on improved T-cell functionality and infiltration. This investigation affords critical perspectives on enhancing anti-tumour immunity through the application of innovative therapeutic strategies.


Assuntos
Anticorpos , Mucina-1 , Neoplasias , Receptor de Morte Celular Programada 1 , Vacinas de DNA , Animais , Camundongos , Anticorpos/metabolismo , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Mucina-1/genética , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA