Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2389, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287054

RESUMO

The association between anemia and outcomes in glioblastoma patients is unclear. We analyzed data from 1346 histologically confirmed adult glioblastoma patients in the TriNetX Research Network. Median hemoglobin and hematocrit levels were quantified for 6 months following diagnosis and used to classify patients as anemic or non-anemic. Associations of anemia and iron supplementation of anemic patients with median overall survival (median-OS) were then studied. Among 1346 glioblastoma patients, 35.9% of male and 40.5% of female patients were classified as anemic using hemoglobin-based WHO guidelines. Among males, anemia was associated with reduced median-OS compared to matched non-anemic males using hemoglobin (HR 1.24; 95% CI 1.00-1.53) or hematocrit-based cutoffs (HR 1.28; 95% CI 1.03-1.59). Among females, anemia was not associated with median-OS using hemoglobin (HR 1.00; 95% CI 0.78-1.27) or hematocrit-based cutoffs (HR: 1.10; 95% CI 0.85-1.41). Iron supplementation of anemic females trended toward increased median-OS (HR 0.61; 95% CI 0.32-1.19) although failing to reach statistical significance whereas no significant association was found in anemic males (HR 0.85; 95% CI 0.41-1.75). Functional transferrin-binding assays confirmed sexually dimorphic binding in resected patient samples indicating underlying differences in iron biology. Anemia among glioblastoma patients exhibits a sex-specific association with survival.


Assuntos
Anemia , Glioblastoma , Adulto , Humanos , Masculino , Feminino , Ferro , Glioblastoma/complicações , Anemia/complicações , Hemoglobinas/metabolismo , Suplementos Nutricionais
2.
Neuro Oncol ; 25(12): 2136-2149, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37539622

RESUMO

Glioblastoma (GBM) is among the deadliest malignancies facing modern oncology. While our understanding of certain aspects of GBM biology has significantly increased over the last decade, other aspects, such as the role of bioactive metals in GBM progression, remain understudied. Iron is the most abundant transition metal found within the earth's crust and plays an intricate role in human physiology owing to its ability to participate in oxidation-reduction reactions. The importance of iron homeostasis in human physiology is apparent when examining the clinical consequences of iron deficiency or iron overload. Despite this, the role of iron in GBM progression has not been well described. Here, we review and synthesize the existing literature examining iron's role in GBM progression and patient outcomes, as well as provide a survey of iron's effects on the major cell types found within the GBM microenvironment at the molecular and cellular level. Iron represents an accessible target given the availability of already approved iron supplements and chelators. Improving our understanding of iron's role in GBM biology may pave the way for iron-modulating approaches to improve patient outcomes.


Assuntos
Glioblastoma , Ferro , Humanos , Ferro/metabolismo , Glioblastoma/metabolismo , Homeostase/fisiologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA