Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nutr ; 147(7): 1301-1307, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28566525

RESUMO

Background: The naturally occurring α-tocopherol stereoisomer RRR-α-tocopherol is known to be more bioactive than synthetic α-tocopherol (all-rac-α-tocopherol). However, the influence of this difference on the α-tocopherol stereoisomer profile of human milk is not understood.Objective: We investigated whether supplemental RRR-α-tocopherol or all-rac-α-tocopherol differentially affected the distribution of α-tocopherol stereoisomers in milk and plasma from lactating women.Methods: Eighty-nine lactating women aged 19-40 y and with a body mass index (in kg/m2) ≤30 were randomly assigned at 4-6 wk postpartum to receive a daily supplement containing 45.5 mg all-rac-α-tocopherol acetate (ARAC), 22.8 mg all-rac-α-tocopherol acetate + 20.1 mg RRR-α-tocopherol (MIX), or 40.2 mg RRR-α-tocopherol (RRR). Milk and plasma were analyzed for α-tocopherol structural isomers and α-tocopherol stereoisomers at baseline and after 6 wk supplementation with the use of chiral HPLC.Results: There were no significant treatment group or time-dependent changes in milk or plasma α, γ, or δ-tocopherol. RRR-α-tocopherol was the most abundant stereoisomer in both milk and plasma in each group. Supplementation changed both milk and plasma percentage RRR-α-tocopherol (RRR > MIX > ARAC) (P < 0.05) and percentage non-RRR-α-tocopherol (ARAC > MIX > RRR) (P < 0.05). In the RRR group, percentage RRR-α-tocopherol increased in milk (mean ± SEM: 78% ± 2.3% compared with 82% ± 1.7%) (P < 0.05) and plasma (mean ± SEM: 77% ± 1.8% compared with 87% ± 1%) (P < 0.05). In contrast, the percentage RRR-α-tocopherol decreased in the MIX and ARAC groups (MIX, P < 0.05; ARAC, P < 0.0001), and percentage non-RRR-α-tocopherol stereoisomers increased (MIX, P < 0.05; ARAC, P < 0.0001) commensurate with an accumulation of 2S-α-tocopherol stereoisomers (P < 0.05) in both milk and plasma. Milk and plasma RRR-α-tocopherol was positively correlated at baseline (r = 0.67; P < 0.0001) and 6 wk (r = 0.80; P < 0.0001).Conclusion: The α-tocopherol supplementation strategy differentially affected the α-tocopherol milk and plasma stereoisomer profile in lactating women. RRR-α-tocopherol increased milk and plasma percentage RRR-α-tocopherol, whereas all-rac-α-tocopherol acetate reduced these percentages. Because RRR-α-tocopherol is the most bioactive stereoisomer, investigating the impact of supplement-driven changes in the milk α-tocopherol stereoisomer profile on the α-tocopherol status of breastfed infants is warranted.


Assuntos
Lactação/fisiologia , Leite Humano/química , Tocoferóis/química , Tocoferóis/farmacologia , Adulto , Suplementos Nutricionais , Feminino , Humanos , Estereoisomerismo , Tocoferóis/metabolismo , Adulto Jovem
2.
J Nutr ; 144(8): 1256-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24899160

RESUMO

Lutein is a carotenoid that varies in breast milk depending on maternal intake. Data are lacking with regard to the effect of dietary lutein supplementation on breast milk lutein concentration during lactation and subsequent plasma lutein concentration in breast-fed infants. This study was conducted to determine the impact of lutein supplementation in the breast milk and plasma of lactating women and in the plasma of breast-fed infants 2-3 mo postpartum. Lutein is the dominant carotenoid in the infant brain and the major carotenoid found in the retina of the eye. Eighty-nine lactating women 4-6 wk postpartum were randomly assigned to be administered either 0 mg/d of lutein (placebo), 6 mg/d of lutein (low-dose), or 12 mg/d of lutein (high-dose). The supplements were consumed for 6 wk while mothers followed their usual diets. Breast milk carotenoids were measured weekly by HPLC, and maternal plasma carotenoid concentrations were measured at the beginning and end of the study. Infant plasma carotenoid concentrations were assessed at the end of the study. No significant differences were found between dietary lutein + zeaxanthin intake and carotenoid concentrations in breast milk and plasma or body mass index at baseline. Total lutein + zeaxanthin concentrations were greater in the low- and high-dose-supplemented groups than in the placebo group in breast milk (140% and 250%, respectively; P < 0.0001), maternal plasma (170% and 250%, respectively; P < 0.0001), and infant plasma (180% and 330%, respectively; P < 0.05). Lutein supplementation did not affect other carotenoids in lactating women or their infants. Lactating women are highly responsive to lutein supplementation, which affects plasma lutein concentrations in the infant. This trial was registered at clinicaltrials.gov as NCT01747668.


Assuntos
Carotenoides/sangue , Suplementos Nutricionais , Lactação/efeitos dos fármacos , Luteína/administração & dosagem , Luteína/sangue , Leite Humano/química , Adulto , Aleitamento Materno , Dieta , Relação Dose-Resposta a Droga , Feminino , Humanos , Lactente , Masculino , Período Pós-Parto
3.
Brain Behav Immun ; 24(4): 631-40, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20138982

RESUMO

Peripheral activation of the immune system by infectious agents triggers the brain-cytokine system causing sickness behaviors which profoundly impact well-being. Dietary fiber is a beneficial foodstuff that, from a gastrointestinal tract perspective, exists in both insoluble and soluble forms. We show that a diet rich in soluble fiber protects mice from endotoxin-induced sickness behavior by polarizing mice Th2 when compared to a diet containing only insoluble fiber. Mice fed soluble fiber became less sick and recovered faster from endotoxin-induced sickness behaviors than mice fed insoluble fiber. In response to intraperitoneal endotoxin, mice fed soluble fiber had up-regulated IL-1RA and reduced IL-1beta and TNF-alpha in the brain as compared to mice fed insoluble fiber. Importantly, mice fed soluble fiber had a basal increase in IL-4 in the ileum and spleen which was absent in MyD88 knockout mice. Con-A stimulated splenocytes from mice fed soluble fiber showed increased IL-4 and IL-5 and decreased IL-2, IL-12 and IFN-gamma when compared to mice fed insoluble fiber. Likewise, endotoxin-stimulated macrophages from mice fed soluble fiber demonstrated decreased IL-1beta, TNF-alpha, IFN-gamma, IL-12 and nitrate and increased IL-1RA, arginase 1 and Ym1 when compared to mice fed insoluble fiber. Finally, the behavioral protection afforded by feeding mice soluble fiber was reduced in IL-4 knockout mice, as was the impact of soluble fiber on Con-A stimulated splenocytes and endotoxin activated macrophages. These data show that a diet rich in soluble fiber protects against endotoxin-induced sickness behavior by polarizing mice Th2 and promoting alternative activation of macrophages.


Assuntos
Citocinas/metabolismo , Dietoterapia/métodos , Fibras na Dieta/farmacologia , Endotoxinas/farmacologia , Comportamento de Doença , Interleucina-4/metabolismo , Células Th2/metabolismo , Animais , Antidiarreicos/farmacologia , Citocinas/genética , Citocinas/imunologia , Fibras na Dieta/classificação , Endotoxinas/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Íleo/citologia , Íleo/efeitos dos fármacos , Íleo/imunologia , Injeções Intraperitoneais , Interferon gama/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucina-4/deficiência , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Pectinas/farmacologia , Reação em Cadeia da Polimerase , Baço/citologia , Baço/efeitos dos fármacos , Baço/inervação , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA