Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Pharmacol ; 13: 1015486, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304166

RESUMO

Pulmonary inflammation caused by respiratory tract viral infections is usually associated with acute exacerbation of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Therefore, maintaining the pulmonary immune homeostasis is particular important for prevention of the acute exacerbation. Bu-Zhong-Yi-Qi-Tang (BZYQT), a traditional Chinese medicine formula, has been broadly used to improve respiratory and gastrointestinal disorders in China for over 700 years. Previously, we have found the regulatory activity of BZYQT on the lower respiratory immune system, while its potential effects during pulmonary inflammation remain unknown. Thus, the current study focused on deciphering its immunomodulatory effect and potential mechanism against pulmonary inflammation by using a viral RNA analogue, poly (I:C), induced murine pulmonary inflammation model and BEAS-2B cell model coupled with network pharmacology. Inflammatory cells in the bronchoalveolar lavage fluid were counted through microscope examination according to the cell's morphology and staining characteristics; protein and gene levels of inflammatory mediators were determined with Elisa and quantitative PCR, respectively; network pharmacology was conducted based on 46 BZYQT-related potential bioactive components, pulmonary inflammation and immune-related targets. Our results indicated that the recruitment of neutrophils and the expression of Adgre1 (encoding the F4/80, which is a macrophage marker) in the lung induced by poly (I:C) were significantly reduced after BZYQT treatment, and these effects were further demonstrated to be related to the interference of leukocyte transendothelial migration from the decreased levels of CXCL10, IL-6, TNF-α, CXCL2, ICAM-1, VCAM-1, and E/P-selectins. Furthermore, BZYQT inhibited the CXCL10, TNF-α, and IFN-ß expression of poly (I:C)-challenged BEAS-2B cells in a dose-dependent manner. Through integrating results from network pharmacology, experiments, and the published literature, isoliquiritigenin, Z-ligustilide, atractylenolide I, atractylenolide III, formononetin, ferulic acid, hesperidin, and cimigenoside were presumed as the bioactive components of BZYQT against pulmonary inflammation. Overall, our findings demonstrated that BZYQT possesses a pronounced immunomodulatory effect on poly (I:C)-induced pulmonary inflammation, which provides a pharmacological basis for BZYQT in the treatment of respiratory disorders.

2.
J Pharm Anal ; 12(1): 65-76, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35573887

RESUMO

Chronic superficial gastritis (CSG) is a common disease of the digestive system that possesses a serious pathogenesis. Jinhong tablet (JHT), a traditional Chinese medicine (TCM) prescription, exerts therapeutic effects against CSG. However, the molecular basis of its therapeutic effect has not been clarified. Herein, we employed ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) based chemical profile identification to determine the chemical components in JHT. Further, we applied network pharmacology to illustrate its molecular mechanisms. A total of 96 chemical constituents were identified in JHT, 31 of which were confirmed using reference standards. Based on the bioinformatics analysis using the symptom-guided pharmacological networks of "chi," "blood," "pain," and "inflammation," and target screening through the interaction probabilities between compounds and targets, matrix metalloproteinase 2 (MMP2), dopamine d2 receptor (DRD2), and Aldo-keto reductase family 1 member B1 (AKR1B1) were identified as key targets in the therapeutic effect exhibited by JHT against CSG. Moreover, according to the inhibitory activities presented in the literature and binding mode analysis, the structural types of alkaloids, flavonoids, organic acids, including chlorogenic acid (10), caffeic acid (13), (-)-corydalmine (33), (-)-isocorypalmine (36), isochlorogenic acid C (38), isochlorogenic acid A (41), quercetin-3-O-α-l-rhamnoside (42), isochlorogenic acid B (47), quercetin (63), and kaempferol (70) tended to show remarkable activities against CSG. Owing to the above findings, we systematically identified the chemical components of JHT and revealed its molecular mechanisms based on the symptoms associated with CSG.

3.
Nat Prod Res ; 36(1): 186-192, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32594764

RESUMO

Two new iridoid glycosides, 2'-O-cis-coumaroylgardoside (1), and 6'-O-caffeoylioxide (2), were isolated from the fruit of Gardenia jasminoides. The structures of these compounds were elucidated based on spectroscopic analysis (HR-ESI-MS, NMR) and chemical methods. The anti-inflammatory activities of the isolates were evaluated by measuring their inhibitory effects on PGE2 production in LPS stimulated RAW 264.7 macrophages, compounds 1 and 2 could reduce PGE2 levels in LPS-activated RAW 264.7 macrophages with IC50 values of 121.4 and 83.38 µM, respectively.


Assuntos
Anti-Inflamatórios , Gardenia , Glicosídeos Iridoides , Animais , Anti-Inflamatórios/farmacologia , Frutas/química , Gardenia/química , Glicosídeos Iridoides/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Células RAW 264.7
4.
Fitoterapia ; 154: 105002, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34324974

RESUMO

Four previously unreported sesquiterpenoid diasteromers, arteannoides U-X (1-4), together with one new norsesquiterpenoid 5 (arteannoide Y) and one undescribed rearranged cadinene sesquiterpenoid 6 (arteannoide Z) were obtained from the dried aerial parts of Artemisia annua (Qinghao). Notably, arteannoides U-X (1-4) are four stereoisomers that possess the same molecules and the same planar connectivity, but differ from each other in configuration at a certain stereocenter. Their accurate structures were unambiguously identified and distinguished by extensive spectroscopic analyses, NMR calculations with DP4+ analysis, electronic circular dichroism (ECD) calculations and X-ray diffraction analyses. Compounds 1, 3, and 4 showed inhibitory activities against the production of inflammatory cytokines (PGE2, NO, IL-6 and TNF-α) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Artemisia annua/química , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , China , Citocinas , Camundongos , Estrutura Molecular , Óxido Nítrico , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Componentes Aéreos da Planta/química , Células RAW 264.7 , Sesquiterpenos/isolamento & purificação
5.
Biomed Chromatogr ; 35(12): e5177, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33998678

RESUMO

Cimicifuga dahurica (Turcz.) Maxim, which is also regarded as the main origin of "Shengma" in the Chinese Pharmacopoeia, has been used as a cooling and detoxification agent for thousands of years. Our previous phytochemical investigations of C. dahurica extracts (CDEs) led to the isolation of a series of 9,19-cycloalkane triterpenoids and phenolic acids showing a potential anti-inflammatory activity. However, the chemical profiling of CDEs and the material basis of its anti-inflammatory effect in vivo has not been clarified. In the present study, the CDE chemical profile and prototype components in rat plasma were identified via ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. As a result, a total of 106 components were identified or tentatively characterized in CDEs, including 54 triterpenoids, 35 phenolic acids, eight amides and nine other type constituents (39 compounds were confirmed with the reference standards). In addition, 20 prototype components (15 triterpenoids and five phenolic acids) were identified in rat plasma, which potentially related to the anti-inflammatory effects of CDEs. Moreover, the anti-inflammatory activities of the main prototype components were further evaluated by their inhibitory effects on the production of NO, as well as the expressions of iNOS and COX-2 in lipopolysaccharide-stimulated RAW264.7 cells, which indicated that 9,19-cycloalkane triterpenoids may play an anti-inflammatory role by down-regulating the expression of iNOS.


Assuntos
Anti-Inflamatórios , Cimicifuga/química , Farmacologia em Rede/métodos , Extratos Vegetais , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Ratos , Triterpenos/análise , Triterpenos/química , Triterpenos/farmacologia
6.
J Pharm Biomed Anal ; 195: 113888, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418443

RESUMO

Sex steroid hormones could directly affect the bone metabolism by regulating cell physiological functions. In female, it inevitably causes the abnormal levels of sex steroid hormones at post-menopause in vivo. Ovariectomized rats and mice are classic animal models of osteoporosis to better understand the action mechanism of anti-osteoporosis drugs. However, it is not clear whether Xian-Ling-Gu-Bao capsule (XLGB), a kidney-tonifying traditional Chinese medicine prescription, treat osteoporosis via regulating multiple sex steroid hormones. In the present study, a reliable method involving ultra high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC/TQ-XS-MS) was developed for simultaneous quantitative analysis of ten sex steroid hormones (three estrogens, five androgens and two progestogens) in rat and mouse serum. The results of methodology were acceptable. The validated method was then successfully applied in the determination of the levels of sex steroid hormones in ovariectomy-induced osteoporosis rats, as well as drug (17ß-estradiol and XLGB) intervened rats. As a result, XLGB could not only significantly increase the level of 17ß-estradiol, but also improve the levels of progesterone, 17α-hydroxyprogesterone and androstenedione. Combined with molecular docking results and pharmacokinetic parameters, psoralen, isopsoralen and sweroside were considered as the key effective components of XLGB to activate adenylyl cyclase on promoting the biosynthesis of multiple sex steroid hormones. It is the first time to evaluate the regulatory effect of kidney-tonifying traditional Chinese medicine prescription on the levels of steroids in ovariectomy-induced osteoporosis rat, as well as the potential substance basis and mechanism of steroid hormone regulation.


Assuntos
Osteoporose , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Feminino , Hormônios Esteroides Gonadais , Humanos , Camundongos , Simulação de Acoplamento Molecular , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Ovariectomia , Ratos , Ratos Sprague-Dawley
7.
Biomed Chromatogr ; 35(6): e5072, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33453065

RESUMO

Jin-hong tablets (JHTs), a well-known traditional Chinese patent medicine (TCPM), have been effectively used for the treatment of chronic superficial gastritis (CSG). The metabolic profile of TCPMs is performed to determine their bioactive components. In this study, a five-step strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and metabolynx™ software combined with mass defect filter technique was developed to delineate the metabolic profile of JHT in vivo. As a result, a total of 163 JHT-related xenobiotics (38 prototypes and 125 metabolites) were identified or tentatively characterized in rat biological samples, and the phase I and II metabolism processes mainly included demethylation, hydroxylation, sulfation, and glucuronidation. In addition, after oral administration of JHT, a large amount of alkaloid-related ingredients was detected in rat plasma samples, indicating that alkaloids may play an important role in the treatment of CSG with JHT. This study is beneficial for understanding the JHT's in vivo metabolic profiles and characteristics, which helps to reveal its in vivo effective components and provides a solid basis for further studies on its functional mechanism.


Assuntos
Alcaloides , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem/métodos , Administração Oral , Alcaloides/análise , Alcaloides/química , Alcaloides/metabolismo , Animais , Alcaloides de Berberina , Bile/química , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/metabolismo , Fezes/química , Flavonoides/análise , Flavonoides/química , Flavonoides/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Comprimidos
8.
Fitoterapia ; 134: 485-492, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30914330

RESUMO

Phytochemical study on rhizomes of Cimicifuga dahurica resulted in the isolation of nine new neolignan and phenylpropanoid glycosides, cimicifugasides A-E (1, 2, 7-9), cimicifugamides B-D (3-5), shomaside G (6) along with four known compounds (10-13). Their structures were identified by extensive spectroscopic analyses (1D-, 2D-NMR, MS, CD, IR, UV) and chemical methods. Their anti-inflammatory potentials were evaluated by measuring their effects on PGE2 production of LPS-stimulated RAW264.7 cells, and compounds 12 and 13 showed moderate anti-inflammatory activities.


Assuntos
Anti-Inflamatórios/farmacologia , Cimicifuga/química , Glicosídeos/farmacologia , Hidroxibenzoatos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , China , Glicosídeos/isolamento & purificação , Hidroxibenzoatos/isolamento & purificação , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Células RAW 264.7 , Rizoma/química
9.
BMC Complement Altern Med ; 18(1): 293, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400936

RESUMO

BACKGROUND: Chinese traditional herbal medicine Fuzhengkangai (FZKA) formulation combination with gefitinib can overcome drug resistance and improve the prognosis of lung adenocarcinoma patients. However, the pharmacological and molecular mechanisms underlying the active ingredients, potential targets, and overcome drug resistance of the drug are still unclear. Therefore, it is necessary to explore the molecular mechanism of FZKA. METHODS: A systems pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of EGFR-TKI resistance with clinically effective herb formula. The differential gene expressions between EGFR-TKI sensitive and resistance cell lines were calculated and used to find overlap from targets as core targets. The prognosis of core targets was validated from the cancer genome atlas (TCGA) database by Cox regression. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment is applied to analysis core targets for revealing mechanism in biology. RESULTS: The results showed that 35 active compounds of FZKA can interact with eight core targets proteins (ADRB2, BCL2, CDKN1A, HTR2C, KCNMA1, PLA2G4A, PRKCA and LYZ). The risk score of them were associated with overall survival and relapse free time (HR = 6.604, 95% CI: 2.314-18.850; HR = 5.132, 95% CI: 1.531-17.220). The pathway enrichment suggested that they involved in EGFR-TKI resistance and non-small cell lung cancer pathways, which directly affect EGFR-TKI resistance. The molecular docking showed that licochalcone a and beta-sitosterol can closely bind two targets (BCL2 and PRKCA) that involved in EGFR-TKI resistance pathway. CONCLUSIONS: This study provided a workflow for understanding mechanism of CHM for against drug resistance.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Medicamentos de Ervas Chinesas , Receptores ErbB/genética , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Biologia Computacional , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Mapas de Interação de Proteínas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
10.
Mol Pharm ; 15(8): 3285-3296, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29939757

RESUMO

Xanthatin (XT), a naturally occurring sesquiterpene lactone presented in cocklebur ( Xanthium strumarium L.), is under development as a potential anticancer agent. Despite the promising anticancer effect of XT, the molecular mechanism underlying its cellular action has not been well elucidated. The mammalian thioredoxin reductase (TrxR) enzymes, the essential seleno-flavoproteins containing a penultimate selenocysteine (Sec) residue at the C-terminus, represent a promising target for cancer chemotherapeutic agents. In this study, XT inhibits both the purified TrxR and the enzyme in cells. The possible binding mode of XT with the TrxR protein is predicted by the covalent docking method. Mechanism studies reveal that XT targets the Sec residue of TrxR and inhibits the enzyme activity irreversibly. Simultaneously, the inhibition of TrxR by XT promotes the oxidative stress-mediated apoptosis of HeLa cells. Importantly, the knockdown of the enzyme sensitizes the cells to XT treatment. Targeting TrxR thus discloses a novel molecular mechanism in accounting for the cellular action of XT and provides insights into the development of XT as an anticancer agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Furanos/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Xanthium/química , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/química , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo
11.
Fitoterapia ; 98: 160-5, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25102471

RESUMO

Desmodeleganine (1), a new potential monoamine oxidase inhibitor, along with three known alkaloids, bufotenin (2), hydroxy-N, N-dimethyltryptamine N(12)-oxide (3), 2-(5-methoxy-1H-indol-3-yl)-N, and N-dimethylethylamine (4) were isolated from the leaves of Desmodium elegans. Their structures were elucidated by IR, MS, 1D and 2D NMR spectra. 1 showed strong monoamine oxidase inhibitory activity with IC50 value of 13.92 ± 1.5 µM, when the IC50 value of iproniazid as a standard was 6.5 ± 0.5 µM. The molecular modeling was also performed to explore the binding mode of compounds 1, 2 at the active site of MAO-A and MAO-B.


Assuntos
Alcaloides/química , Fabaceae/química , Alcaloides Indólicos/química , Inibidores da Monoaminoxidase/química , Alcaloides/isolamento & purificação , Animais , Alcaloides Indólicos/isolamento & purificação , Masculino , Mitocôndrias Hepáticas/enzimologia , Modelos Moleculares , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/isolamento & purificação , Folhas de Planta/química , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA