Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phytomedicine ; 125: 155239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308917

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a demyelination disorder caused by an overactive immune response. Its pathological characteristics include CNS inflammation, white matter demyelination, glial cell proliferation, and so on. Huangqi-Guizhi-Wuwu Decoction (HGWD), which is recorded in the Synopsis of the Golden Chamber, is used clinically for the therapy of MS, but its mechanism is still elusive. PURPOSE: This study was aimed to investigate the impact of HGWD on the classical animal model for MS, experimental autoimmune encephalomyelitis (EAE), and explore the underlying action mechanism. RESULTS: HGWD ameliorated the pathogenesis of EAE mice, and improved their neurobehavior and pathological tissue damage. Network pharmacology predictions revealed the action mechanism of HGWD in EAE mice might be related to its effect on the immune system of mice. HGWD effectively suppressed the inflammatory infiltration in CNS, while also preventing the elevation of CD4+T cells of mice with EAE. HGWD could increase the ratio of Treg cells, up-regulate the secretion of IL-10 and Foxp3 mRNA expression, inhibit the ratio of Th1 and Th17 cells, down-regulate the IFN-γ and IL-17 protein expression, as well as the RORγT and T-bet gene expression in EAE mice. In addition, HGWD-containing serum modulated Th1/Th17/Treg cell differentiation in vitro. Moreover, HGWD inhibited the p-JAK1, p-JAK2, p-STAT1, p-STAT3 and p-STAT4 proteins and elevated the p-STAT5 protein in lymphoid tissues of EAE mice. CONCLUSION: HGWD improved the progress of EAE by regulating the proportion of CD4+T cell subtype differentiation, which might be exerted through JAK/STAT signaling pathway, providing a pharmacological basis for the clinical treatment of MS.


Assuntos
Astragalus propinquus , Medicamentos de Ervas Chinesas , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL , Células Th17
2.
J Ethnopharmacol ; 325: 117846, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301982

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix Astragali, a versatile traditional Chinese medicinal herb, has a rich history dating back to "Sheng Nong's herbal classic". It has been employed in clinical practice to address various ailments, including depression. One of its primary active components, total flavonoids from Astragalus (TFA), remains unexplored in terms of its potential antidepressant properties. This study delves into the antidepressant effects of TFA using a mouse model subjected to chronic unpredictable mild stress (CUMS). AIMS OF THE STUDY: The study aimed to scrutinize how TFA influenced depressive behaviors, corticosterone and glutamate levels in the hippocampus, as well as myelin-related protein expression in CUMS mice. Additionally, it sought to explore the involvement of the Wnt/ß-catenin/Olig2/Sox10 signaling axis as a potential antidepressant mechanism of TFA. MATERIALS AND METHODS: Male C57BL/6 mice were subjected to CUMS to induce depressive behaviors. TFA were orally administered at two different doses (50 mg/kg and 100 mg/kg). A battery of behavioral tests, biochemical analyses, immunohistochemistry, UPLC-MS/MS, real-time PCR, and Western blotting were employed to evaluate the antidepressant potential of TFA. The role of the Wnt/ß-catenin/Olig2/Sox10 signaling axis in the antidepressant mechanism of TFA was validated through MO3.13 cells. RESULTS: TFA administration significantly alleviated depressive behaviors in CUMS mice, as evidenced by improved sucrose preference, reduced immobility in tail suspension and forced swimming tests, and increased locomotor activity in the open field test. Moreover, TFA effectively reduced hippocampal corticosterone and glutamate levels and promoted myelin formation in the hippocampus of CUMS mice. Then, TFA increased Olig2 and Sox10 expression while inhibiting the Wnt/ß-catenin pathway in the hippocampus of CUMS mice. Finally, we further confirmed the role of TFA in promoting myelin regeneration through the Wnt/ß-catenin/Olig2/Sox10 signaling axis in MO3.13 cells. CONCLUSIONS: TFA exhibited promising antidepressant effects in the CUMS mouse model, facilitated by the restoration of myelin sheaths and regulation of corticosterone, glutamate, Olig2, Sox10, and the Wnt/ß-catenin pathway. This research provides valuable insights into the potential therapeutic application of TFA in treating depression, although further investigations are required to fully elucidate the underlying molecular mechanisms and clinical relevance.


Assuntos
Corticosterona , Depressão , Fator de Transcrição 2 de Oligodendrócitos , Masculino , Animais , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Flavonoides/farmacologia , Cromatografia Líquida , beta Catenina/metabolismo , Camundongos Endogâmicos C57BL , Espectrometria de Massas em Tandem , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo , Glutamatos/metabolismo , Glutamatos/farmacologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
3.
Signal Transduct Target Ther ; 9(1): 13, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185721

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.


Assuntos
Doenças Cardiovasculares , Hipercolesterolemia , Humanos , Pró-Proteína Convertase 9/genética , Anticorpos Monoclonais/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Subtilisinas
4.
Phytomedicine ; 121: 155045, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37742526

RESUMO

BACKGROUND: Isoliquiritigenin (ISL), a natural flavonoid, has anti-tumor activity. But, the understanding of the impact and molecular mechanism of ISL on the growth of gastric cancer (GC) remains limited. PURPOSE: The study was to explore the tumor suppressive effect of ISL on GC growth both in vitro and in vivo, meanwhile, clarify its molecular mechanisms. METHODS: Cell viability was detected by cell counting kit-8 (CCK-8) assay. Apoptotic cells in vitro were monitored by Hoechst 33,342 solution. Protein expression was assessed by Western blot. Reactive oxygen species (ROS) level was evaluated by utilizing 2',7'- dichlorofluorescin diacetate (DCFH-DA). Lactic acid level was detected with L-lactate assay kit. Glucose uptake was monitored with fluorescently tagged glucose 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Glycolytic proton efflux rate (GlycoPER) was evaluated by glycolytic rate assay kit. Oxygen consumption rate (OCR) was conducted by mito stress test kit. A nude mouse model of gastric cancer cell xenograft was established by subcutaneous injection with MGC803 cells. Pathological changes were evaluated by using H&E staining. Cell apoptosis in vivo was evaluated by terminal deoxy-nucleotide transferase mediated dUTP nick end labeling (TUNEL) assay. RESULTS: ISL remarkably suppressed GC growth and increased cell apoptosis. It regulated apoptosis-related and metabolism-related protein expression both in vitro and in vivo. ISL blocked glucose uptake and suppressed production and secretion of lactic acid, which was accompanied with suppressed mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis but increased ROS accumulation. Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), cellular-myelocytomatosis viral oncogene (c-Myc), hypoxia inducible factor-1α (HIF-1α), glucose transporter 4 (GLUT4) or pyruvate dehydrogenase kinase 1 (PDHK1), could abolish ISL-induced inhibition of cell viability in GC cells. CONCLUSION: These findings implicated that ISL inhibits GC growth by decreasing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α-mediated energy metabolic collapse through depressing protein expression of c-Myc and HIF-1α in GC, suggesting its potential application for GC treatment.


Assuntos
Neoplasias Gástricas , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Glucose/metabolismo , Ácido Láctico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
5.
Chin J Nat Med ; 21(9): 710-720, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37777320

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. In particular, increasing evidence has showed that astrocyte-mediated neuroinflammation is involved in the pathogenesis of PD. As a precious traditional Chinese medicine, bear bile powder (BBP) has a long history of use in clinical practice. It has numerous activities, such as clearing heat, calming the liver wind and anti-inflammation, and also exhibits good therapeutic effect on convulsive epilepsy. However, whether BBP can prevent the development of PD has not been elucidated. Hence, this study was designed to explore the effect and mechanism of BBP on suppressing astrocyte-mediated neuroinflammation in a mouse model of PD. PD-like behavior was induced in the mice by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg·kg-1) for five days, followed by BBP (50, 100, and 200 mg·kg-1) treatment daily for ten days. LPS stimulated rat C6 astrocytic cells were used as a cell model of neuroinflammation. THe results indicated that BBP treatment significantly ameliorated dyskinesia, increased the levels of tyrosine hydroxylase (TH) and inhibited astrocyte hyperactivation in the substantia nigra (SN) of PD mice. Furthermore, BBP decreased the protein levels of glial fibrillary acidic protein (GFAP), cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS), and up-regulated the protein levels of takeda G protein-coupled receptor 5 (TGR5) in the SN. Moreover, BBP significantly activated TGR5 in a dose-dependent manner, and decreased the protein levels of GFAP, iNOS and COX2, as well as the mRNA levels of GFAP, iNOS, COX2, interleukin (IL) -1ß, IL-6 and tumor necrosis factor-α (TNF-α) in LPS-stimulated C6 cells. Notably, BBP suppressed the phosphorylation of protein kinase B (AKT), inhibitor of NF-κB (IκBα) and nuclear factor-κB (NF-κB) proteins in vivo and in vitro. We also observed that TGR5 inhibitor triamterene attenuated the anti-neuroinflammatory effect of BBP on LPS-stimulated C6 cells. Taken together, BBP alleviates the progression of PD mice by suppressing astrocyte-mediated inflammation via TGR5.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Ursidae , Humanos , Camundongos , Ratos , Animais , Idoso , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Pós/metabolismo , Pós/farmacologia , Pós/uso terapêutico , Ursidae/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/farmacologia , Bile , Camundongos Endogâmicos C57BL , Microglia , Modelos Animais de Doenças
6.
Am J Chin Med ; 51(5): 1233-1248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37385966

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory disease characterized by CD4[Formula: see text] T cell-mediated immune cell infiltration and demyelination in the central nervous system (CNS). The subtypes of CD4[Formula: see text] T cells are T helper cells 1 (Th1), Th2, Th17, and regulatory T cells (Treg), while three other types of cells besides Th2 play a key role in MS and its classic animal model, experimental autoimmune encephalomyelitis (EAE). Tregs are responsible for immunosuppression, while pathogenic Th1 and Th17 cells cause autoimmune-associated demyelination. Therefore, suppressing Th1 and Th17 cell differentiation and increasing the percentage of Treg cells may contribute to the treatment of EAE/MS. Astragali Radix (AR) is a representative medicine with immunoregulatory, anti-inflammatory, antitumor, and neuroprotective effects.The active ingredients in AR include astragalus flavones, polysaccharides, and saponins. In this study, it was found that the total flavonoids of Astragus (TFA) could effectively treat EAE in mice by ameliorating EAE motor disorders, reducing inflammatory damage and demyelination, inhibiting the proportion of Th17 and Th1 cells, and promoting Tregs differentiation by regulating the JAK/STAT and NF[Formula: see text]B signaling pathways. This novel finding may increase the possibility of using AR or TFA as a drug with immunomodulatory effects for the treatment of autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Linfócitos T Reguladores , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Células Th17 , Transdução de Sinais , Células Th1 , Diferenciação Celular , Camundongos Endogâmicos C57BL
7.
Phytother Res ; 37(3): 848-859, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36484427

RESUMO

Isoliquiritigenin (ISL) is a flavonoid with numerous pharmacological properties, including anti-inflammation, yet its role in Parkinson's disease (PD) with microglia-mediated neuroinflammation remains unknown. In this study, the effects of ISL on inhibiting microglia-mediated neuroinflammation in PD were evaluated in the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model of PD and in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our results showed that ISL prevented behavioral deficits and excessive microglial activation in MPTP-treated mice. Moreover, ISL was found to prevent the elevation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and mitigate the phosphorylation of c-Jun N-terminal protein kinase (JNK), protein kinase B (AKT), nuclear factor kappa light-chain enhancer of activated B cells (NFκB), and inhibitor of NFκB protein ɑ (IκBɑ) in the substantia nigra and striatum of MPTP-treated mice and LPS-stimulated BV-2 cells. Meanwhile, in LPS-stimulated BV-2 cells, ISL inhibited the production of inflammatory mediators such as interleukin (IL)-1ß, IL-6 and tumor necrosis factor alpha (TNF-α). In addition, the agonist of JNK partly abolished the inhibitory effects of ISL in LPS-treated BV-2 cells. Our results demonstrated that ISL inhibits microglia-mediated neuroinflammation in PD models probably through deactivating JNK/AKT/NFκB signaling pathways. The novel findings suggest the therapeutic potential of ISL for microglia-mediated neuroinflammation in PD.


Assuntos
Doença de Parkinson , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença de Parkinson/patologia , Microglia , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Linhagem Celular , Transdução de Sinais , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
9.
J Ethnopharmacol ; 291: 115160, 2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35245629

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Artemisia annua L. (A. annua) is a traditional Chinese medicine that has been used since ancient times to treat malaria, eczema, dermatomycosis, jaundice, and boils. Modern pharmacological studies show that it has immunosuppressive and anti-inflammatory effects. However, the mechanism of A. annua in the treatment of atopic dermatitis (AD) remains unclear. AIM OF THE STUDY: This study was aimed to investigate the effect of A. annua water extract (AWE) on 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model and tried to explore its possible underlying mechanisms. MATERIALS AND METHODS: AD was induced in BALB/c mice by the topical repeated application of DNCB. Oral drug intervention of AWE and dexamethasone (DEX, positive control) began from the 7th day and continued for 13 consecutive days. The clinical skin score, ear thickness and the weight of ear and spleen were assessed. The ear tissue were stained with toluidine blue and hematoxylin and eosin (H&E) to detect inflammatory cell infiltration. IgE, terleukin (IL)-4 and IL-13 levels in the serum and IgE level in splenocytes were quantified by enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of IL-4, IL-6, IL-13, IL-17, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin (TSLP) were measured by quantitative real time polymerase chain reaction. The phosphorylation levels of mitogen-activated protein kinases (MAPKs)-p38 and nuclear factor (NF)-κB in ear tissue were detected by Western blot. RESULTS: Results demonstrated that AWE treatment significantly attenuated the AD-like symptoms in DNCB-induced BALB/c mice, including the skin dermatitis severity and ear edema. Further study disclosed that AWE treatment suppressed the expressions of IgE, IL-4, IL-6, IL-13, IL-17, TNF-α and TSLP at mRNA and protein levels. Moreover, AWE showed inhibitory effect on the phosphorylation of p38 MAPK and NFκB in ear tissues of AD mice. CONCLUSIONS: Collectively, our results suggested that AWE suppressed DNCB-induced AD in mice probably by restraining Th2 type inflammatory response. These findings might pave the road for the potential clinical application of AWE for AD treatment.


Assuntos
Artemisia annua , Dermatite Atópica , Eczema , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Eczema/metabolismo , Eczema/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pele/patologia , Células Th2/metabolismo , Água/farmacologia
10.
J Ethnopharmacol ; 289: 115063, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35149130

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: According to the Tang Dynasty classics Dietetic Material Medica and the Ming Dynasty classics Compendium of Materia Medica records, bear bile powder (BBP) has been used to treat a variety of diseases, such as febrile seizures, the pathogenesis of which is associated to neuroinflammation. However, the mechanism of BBP on alleviating neuroinflammation remains unclear. AIMS OF THE STUDY: Microglia can be activated by peripheral lipopolysaccharide (LPS) and play an important role in the pathogenesis of neuroinflammation. The purpose of this study is to investigate the effects and mechanism of BBP in inhibiting LPS-induced microglia inflammation in vitro and in vivo. MATERIALS AND METHODS: The anti-microglia inflammatory effects and mechanism of BBP were assessed in LPS-treated BV2 microglial cells and in LPS-treated mice. The mRNA expression levels of the inflammatory factor and the protein expressions of cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), takeda G-protein coupled receptor 5 (TGR5), nuclear factor-κB (NF-κB), inhibitor of NF-κB (IκBɑ), protein kinase B (AKT) in BV2 cells, mouse hippocampus and cortex were detected. The NF-κB transcription activity and NF-κB nuclear translocation were observed. RESULTS: Our findings showed that BBP reduces branched process retraction and NO in LPS-treated BV2 cells, inhibits the protein expression of ionized calcium binding adaptor molecule 1 in the hippocampus of LPS-treated mice. Moreover, we observed that BBP decreases tumor necrosis factor α, interleukin (IL)-6 and IL-1ß mRNA levels, deceases iNOS and COX-2 protein levels, increases TGR5 protein levels, suppresses the phosphorylation of AKT, NF-κB and IκBɑ protein in microglia both in vitro and in vivo. Further, we found that triamterene, the inhibitor of TGR5, abolishes the effects of BBP in LPS- treated BV2 cells. CONCLUSION: BBP inhibits LPS-induced microglia activation, and the mechanism of its action is partly through TGR5/AKT/NF-κB signaling pathway.


Assuntos
Bile/química , Produtos Biológicos/farmacologia , Medicina Tradicional Chinesa , Doenças Neuroinflamatórias/tratamento farmacológico , Animais , Linhagem Celular , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , NF-kappa B/metabolismo , Pós , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ursidae
11.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4167-4174, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34467729

RESUMO

This study aimed to explore the effects of galangin on energy metabolism and autophagy in gastric cancer MGC803 cells and the underlying mechanism. Cell counting kit-8(CCK-8) was used to detect the effects of galangin at different concentrations on via-bility of MGC803 cells after 48 h intervention. Western blot was carried out to measure the effects of galangin on expression of proteins related to autophagy, nuclear factor-κB(NF-κB) pathway and energy metabolism, followed by the determination of its effects on mRNA expression of energy metabolism-related proteins by Real-time quantitative PCR(qPCR). The impact of galangin on autophagy was explored using AutophagyGreen dye reagent, with autophagosomes and lysosomes observed under the transmission electron microscope(TEM). Nude mice transplanted with gastric cancer MGC803 cells via subcutaneous injection were randomly divided into the following three groups: control(0.5% sodium carboxymethyl cellulose, once a day), 5-fluorouracil(5-FU, 50 mg·kg~(-1), twice a week), and galangin(120 mg·kg~(-1), once a day) groups. The body weight and tumor volume were measured once every three days with a vernier caliper at the same time point by the same person. After 21-d treatment, the tumor tissue was isolated and weighed for the calculation of the tumor-suppressing rate. The comparison with the control group revealed that galangin inhibited the viability of MGC803 cells, up-regulated the protein expression of microtuble-associated protein 1 light chain 3 B(LC3 B) Ⅱ, inhibited the phosphorylation of NF-κB pathway-related proteins, and promoted the formation of autophagosomes in MGC803 cells. However, it did not obviously affect the expression of energy metabolism-related proteins. Furthermore, galangin at 120 mg·kg~(-1) significantly reduced the tumor weight and volume in mice, enhanced LC3 BⅡ protein expression, and inhibited the phosphorylation of NF-κB pathway-related proteins. All these have suggested that galangin inhibited the growth of gastric cancer MGC803 cells both in vivo and in vitro, possibly by inhibiting the NF-κB pathway and enhancing autophagy.


Assuntos
NF-kappa B , Neoplasias Gástricas , Animais , Autofagia , Flavonoides , Camundongos , Camundongos Nus , NF-kappa B/genética , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
12.
Phytomedicine ; 80: 153385, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33091854

RESUMO

BACKGROUND: Microglia-mediated neuroinflammation is one of the most prominent characteristics of multiple sclerosis (MS), a chronic demyelination disease. As one of the main active ingredients in Astragali radix, total flavonoids of Astragalus (TFA) has multiple pharmacological effects such as immunomodulation, anti-inflammation and and anti-tumor. However, little is known about whether TFA could inhibit microglia-mediated neuroinflammation in MS. PURPOSE: This study was aimed to elucidate whether TFA could inhibit microglia-mediated neuroinflammation in MS. STUDY DESIGN: In the present study, we explored the protective effect of TFA on experimental autoimmune encephalomyelitis (EAE), an animal model of MS, in mice for the first time, and discussed its mechanism from the aspect of anti-microglia-mediated neuroinflammation. METHODS: The mice received oral administration of TFA (25 and 50 mg/kg) daily from two days before immunization and continued until day 21 post-immunization. The effect of TFA on EAE in mice and its mechanism were investigated by ELISA, Western blot, real-time PCR, luciferase reporter assay, histopathology and immunohistochemistry. RESULTS: TFA were shown to alleviate the severity of EAE in mice. It inhibited the excessive activation of microglia both in spinal cords of EAE mice and in LPS-stimulated BV-2 cells, evidenced by weakening the production of inflammatory mediators such as NO, TNF-α, IL-6, and IL-1ß markedly at either protein or mRNA level. Further study demonstrated that TFA repressed the phosphorylation, nuclear translocation and transcriptional activity of NFκB, and inhibited the activation of AKT and JNK signaling in BV-2 cells induced by LPS. The agonists of AKT and JNK, anisomycin and SC79, could partly abolish the inhibitory effect of TFA on the production of inflammatory mediators in BV-2 cells induced by LPS. CONCLUSIONS: Taken together, our results clarified that TFA inhibited microglia-mediated inflammation in EAE mice probably through deactivating JNK/AKT/NFκB signaling pathways. The novel findings may lay a theoretical foundation for the clinical application of TFA in the treatment of MS.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Astrágalo/química , Encefalomielite Autoimune Experimental/tratamento farmacológico , Flavonoides/farmacologia , Microglia/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Flavonoides/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-31320912

RESUMO

AIM: Chronic atrophic gastritis (CAG), the precancerous lesions of gastric cancer, plays an important role in the stepwise process of gastric cancer. The ancient Chinese medicine believes in that Qi deficiency and blood stasis are involved in the pathogenesis of CAG. Weiqi decoction, a classical formula from Longhua Hospital, could supplement Qi and activate blood circulation of human beings and has been used for treating CAG in clinic over twenty years. The study aims to clarify the effect and underlying molecular mechanism of Weiqi decoction on CAG rats. METHODS: Forty-eight male Wistar rats were divided randomly into six groups: control group, model group, folic acid group, and WQD-treated groups at doses of 4 g/kg, 2 g/kg, and 1 g/kg, with eight rats in each group. MNNG and saturated NaCl were used to induce CAG rat with precancerous lesion (intestinal metaplasia and dysplasia). After 40 weeks, gastric mucosal blood flow was measured using Laser Doppler Flowmetry. The pathological changes of the gastric mucosa were identified by H&E staining and AB-PAS staining. The protein expression of COX-2, HIF-1α, VEGFR1, VEGFR2, Ki67, and cleaved caspase 3 in the gastric tissues was measured by western blotting approach. Gene expression of COX-2, HIF-1α, VEGF, VEGFR1, VEGFR2, Ang-1, and Ang-2 was detected by using Quantitative PCR method. The PGE2 concentrations in serum were detected by ELISA method. The protein expression of Ki67 in gastric mucosa was also detected by immunohistochemistry. RESULTS: Compared with control rats, atrophy and intestinal metaplasia as well as the microcirculation disturbance of gastric mucosa were induced in the stomach of CAG rats identified by the H&E and AB-PAS staining as well as microcirculation measurement, which could be significantly attenuated by WQD treatment. Moreover, compared with the control group, the protein and gene expression of COX-2, HIF-1α, VEGFR1, and VEGFR2 in gastric tissues of pylorus was obviously increased and the serum PGE2 level was significantly deceased in CAG rats, which could be significantly counteracted by WQD administration. However, the gene expression of Ang-1 and Ang-2 was not significant difference between control rats and CAG rats, and WQD also had no significant effect on the gene expression of Ang-1 and Ang-2. Furthermore, the increased cell proliferation marked by upregulated protein expression of Ki67 and decreased cell apoptosis marked by downregulated protein expression of cleaved caspase 3 in stomach of pylorus in CAG rats were obviously reversed by WQD treatment. CONCLUSION: WQD attenuated CAG with precancerous lesion through regulating gastric mucosal blood flow disturbance and HIF-1α signaling pathway.

14.
J Ethnopharmacol ; 240: 111953, 2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31082513

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Nowadays, there is no specific effective western medicine for functional dyspepsia (FD), especially in children. Clinically, child compound Endothelium corneum (CCEC) has shown to be effective for the therapy of FD, however, the underlying mechanism has not been elucidated yet. MATERIALS AND METHODS: FD was induced in rats by irregular diet plus dilute hydrochloric acid feeding. Gastric emptying and small intestinal transit were examined by intragastric gavage with Evans blue. Histopathology was assessed by H&E staining. Gastrointestinal hormones and brain gut peptides were measured by ELISA assay. mRNA expression level was quantified by real-time PCR. Protein expression level was detected by western blotting assay. Gut microbiota was analyzed by 16S rRNA miseq sequencing. RESULTS: CCEC significantly enhanced gastric emptying and small intestinal transit of FD rats, and prominently suppressed gastrointestinal microinflammation. At phylum level, CCEC prevented the decrease of Firmicutes and the increase of Bacteroidetes in gut of FD rats. In stomach of FD rats, MTL, CCK and VIP levels were significantly increased, which could be repressed by CCEC; however, the decreased GAS level could not be elevated by CCEC. In small intestine of FD rats, MTL and GAS levels were decreased, while VIP content was increased. These alterations could be effectively reversed by CCEC. NPY levels in serum, small intestine and hypothalamus of FD rats were significantly decreased, which could be rescued by CCEC. Moreover, the over-activated POMC/Stat3/Akt pathway in hypothalamus of FD rats could be suppressed by CCEC. CONCLUSION: CCEC enhanced gastrointestinal motility probably through rebalancing the homeostasis of brain-gut-microbiota axis in FD rats. The novel findings may provide insightful theoretical basis for its clinical employment.


Assuntos
Dispepsia/tratamento farmacológico , Motilidade Gastrointestinal/efeitos dos fármacos , Animais , Ciclo-Oxigenase 2/genética , Dispepsia/metabolismo , Dispepsia/microbiologia , Dispepsia/fisiopatologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Homeostase/efeitos dos fármacos , Hipotálamo/microbiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/fisiologia , Masculino , Medicina Tradicional Chinesa , Óxido Nítrico Sintase Tipo II/genética , Peroxidase/metabolismo , RNA Ribossômico 16S , Ratos Wistar , Estômago/efeitos dos fármacos , Estômago/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Toxicol Appl Pharmacol ; 362: 105-115, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385269

RESUMO

CD4+ T cells, especially T-helper (Th) cells (Th1, Th2 and Th17) and regulatory T cells (Treg) play pivotal role in the pathogenesis of multiple sclerosis (MS), a demyelinating autoimmune disease occurring in central nervous system (CNS). Astragaloside IV (ASI, CAS: 84687-43-4) is one of the saponins isolated from Astragalus membranceus, a traditional Chinese medicine with immunomodulatory effect. So far, whether ASI has curative effect on experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and how it affects the subsets of CD4+ T cells, as well as the underlying mechanism have not been clearly elucidated. In the present study, ASI was found to ameliorate the progression and hamper the recurrence of EAE effectively in the treatment regimens. It significantly reduced the demyelination and inflammatory infiltration of CNS in EAE mice by suppressing the percentage of Th1 and Th17 cells, which was closely associated with the inhibition of JAK/STAT and NF-κB signaling pathways. ASI also increased the percentage of Treg cells in spleen and CNS, which was accompanied by elevated Foxp3. However, in vitro experiments disclosed that ASI could regulate the differentiation of Th17 and Treg cells but not Th1 cells. In addition, it induced the apoptosis of MOG-stimulated CD4+ T cells probably through modulating STAT3/Bcl-2/Bax signaling pathways. Together, our findings suggested that ASI can modulate the differentiation of autoreactive CD4+ T cells and is a potential prodrug or drug for the treatment of MS and other similar autoimmune diseases.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Encefalomielite Autoimune Experimental/imunologia , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Janus Quinases/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição STAT/metabolismo
16.
Toxicol Appl Pharmacol ; 340: 58-66, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294303

RESUMO

Endothelial cells of cerebral microvessels are one of the components of blood-brain-barrier (BBB), which are connected by tight junctions (TJs). BBB disruption in cerebral diseases such as ischemic stroke, Alzhemer's disease, multiple sclerosis and traumatic brain injury is implicated to exacerbate the disease progression. Astragaloside IV (ASIV) isolated from Astragalus membranaceus prevents BBB breakdown in rodents induced with cerebral edema and experimental autoimmune encephalomyelitis. However, its underlying molecular mechanism has not been elucidated yet. In present study, ASIV was found to prevent the leakage of BBB in LPS-induced mice, which was accompanied with increased zo-1 and occludin but reduced VCAM-1 in brain microvessels. Similarly, in brain endothelial cell line bEnd.3 cells, ASIV mitigated the increased permeability induced by LPS, as evidenced by increased TEER and reduced sodium fluorescein extravasation. ASIV also enhanced the expression of TJ proteins such as zo-1, occludin and claudin-5 in LPS stimulated bEnd.3 cells. Meanwhile, it inhibited the inflammatory responses and prevented the monocyte adhesion onto bEnd.3 cells upon LPS stimulation. Further study disclosed that ASIV could alleviate ROS level and activate Nrf2 antioxidant pathway in bEnd.3 cells. When Nrf2 was silenced, the protective effect of ASIV was abolished. In brain microvessels of LPS-induced mice, ASIV also enhanced the expression of Nrf2 antioxidant pathway related proteins. Collectively, our results demonstrated that ASIV protected the integrity of BBB in LPS-induced mice, the mechanism of which might be mediated via activating Nrf2 signaling pathway. The findings suggested that ASIV might be a potential neuroprotective drug acting on BBB.


Assuntos
Antioxidantes/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Relação Dose-Resposta a Droga , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Distribuição Aleatória , Transdução de Sinais
17.
Int J Mol Med ; 40(4): 1270-1276, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28902359

RESUMO

The excessive activation of microglia in many neurodegenerative diseases is detrimental to neuronal survival. Isoastragaloside I (ISO I) is a natural saponin molecule found within the roots of Astragalus membranaceus, a famous traditional Chinese medicine. In the present study, the anti­inflammatory effects and the mechanisms of action of ISO I on activated BV-2 cells stimulated with lipopolysaccharide (LPS) were investigated. ISO I dose­dependently inhibited the excessive release of nitric oxide (NO) and tumor necrosis factor (TNF)-α in the LPS-stimulated BV-2 cells. Moreover, it decreased the production of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), and mitigated the gene expression of interleukin (IL)-1ß, TNF-α and iNOS induced by LPS. Further experiments revealed that ISO I decreased the phosphorylation levels of nuclear factor-κB (NF-κB), and suppressed its nuclear translocation and transactivation activity. In addition, it inhibited the activation of signaling pathway molecules, such as PI3K, Akt and mitogen-activated protein kinases (MAPKs). Taken together, our findings suggest that ISO I prevents LPS-induced microglial activation probably by inhibiting the activation of the NF-κB via PI3K/Akt and MAPK signaling pathways, indicating its therapeutic potential for neurological diseases relevant to neuroinflammation.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Microglia/patologia , NF-kappa B/metabolismo , Saponinas/farmacologia , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Inflamação/enzimologia , Inflamação/genética , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
BMC Complement Altern Med ; 16: 20, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26800679

RESUMO

BACKGROUND: Compound Muniziqi granule (MNZQ), a traditional Uighur medicinal preparation, comprises 13 species of medicinal plants. MNZQ is traditionally used for regulating body immunity, modulating inflammation and pain, detoxification, and inhibiting tumor growth. This study aims to scientifically evaluate the anti-inflammatory and analgesic activities of MNZQ, support its clinical use and further research with scientific evidence. METHODS: The analgesic activity of MNZQ was evaluated using hot plate test and acetic acid-induced abdominal writhing test. Acute inflammation was evaluated using xylene-induced ear edema and carrageenan-induced paw edema models, while chronic inflammation was evaluated using cotton pellet-induced granuloma model. RESULTS: MNZQ exerted analgesic activities with a significant dose-dependent increase in latency in the hot plate test. The percentage inhibition suggested that MNZQ exhibited analgesic activities in the central nervous system. Meanwhile, MNZQ at 0.8, 2.4, and 7.2 g/kg strongly inhibited the acetic acid-induced writhing response by 25.22% (p < 0.01), 44.60% (p < 0.001), and 49.41% (p < 0.001), respectively. MNZQ also exerted analgesic activities in the peripheral nervous system. Moreover, MNZQ was demonstrated a significant anti-inflammatory effect against xylene-induced edema in a dose-dependent manner. The percentage inhibition was 22.24% (p < 0.01) at the highest dosage of 7.2 g/kg. MNZQ at 1.62 and 4.86 g/kg significantly reduced carrageenan-induced rat hind paw edema by 82.43% and 84.32% (p < 0.001), respectively, 1 h after injecting carrageenan, and the inhibitory effect lasted for 5 h. MNZQ also exerted a significant anti-inflammatory effect against cotton pellet-induced granuloma formation. MNZQ at 1.62 and 4.86 g/kg could inhibit granuloma formation by 17.07% and 17.60%, respectively, whereas the percentage inhibition of diclofenac was 33.12%. CONCLUSIONS: The results obtained suggest that MNZQ possesses potential anti-inflammatory and analgesic activities. This study provides a scientific basis for the use of MNZQ in alleviating pain and treating inflammatory disorders.


Assuntos
Analgésicos/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Dor/tratamento farmacológico , Plantas Medicinais/química , Animais , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Dor/etiologia , Fitoterapia , Ratos , Ratos Wistar
19.
Zhongguo Zhong Yao Za Zhi ; 41(8): 1498-1503, 2016 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-28884546

RESUMO

To investigate the inhibitory effect and mechanism of vina-ginsenoside R7 (R7) on the activation of rat C6 astrocytes cells induced by LPS/TNF-α, cells in logarithmic growth phase were cultured in DMEM medium without FBS for 24 h. After dissociated using 0.25% EDTA-trypsin, the cells were seeded into respective plates at the density of 1.5×106 cells per mL and cultured overnight. The cells were divided into the following groups: control group (no treatment), model group (treated with LPS 1 µg•mL⁻¹ and TNF-α 10 µg•L⁻¹ treated for 24 h), R7 groups (pre-treated with 6.25, 12.5, 25, 50, and 75 µmol•L⁻¹ R7, 4 µmol•L⁻¹ L-NMMA for 2 h and then stimulated with LPS 1 mg•L⁻¹ and TNF-α 10 µg•L⁻¹ for 24 h). Cell viability was analyzed by CCK-8 kit. Secretion of nitric oxide (NO) in the medium was measured by Greiss method. Concentrations of interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) were assayed by ELISA kits. Gene expressions of inflammatory factors were examined by quantitative-PCR analysis. Activation of NF-κB was detected by dual luciferase reporter gene assay kit. The results showed that R7 could significantly inhibit the secretion of NO from C6 cells in a dose-effect manner, with an IC50 of 34 µmol•L⁻¹. And it could reduce cell proliferation induced by LPS/TNF-α stimulation. Furthermore, R7 at 50 µmol•L⁻¹ significantly down-regulated gene expressions of iNOS (P<0.001), TNF-α (P<0.001), IL-1ß(P<0.05), and COX-2 (P<0.001), but could not change gene expression of IL-6. However, R7 reduced the secretion of TNF-α (P<0.001) and IL-6 (P<0.001). Further studies disclosed that, different concentrations of R7 (25, 50, 100 µmol•L⁻¹) could significantly inhibit the transcription activity of NF-κB(P<0.05, P<0.01, and P<0.001). In conclusion, R7 could inhibit inflammatory responses in C6 cells induced by LPS/TNF-α probably by inhibiting the transcription activity of NF-κB, which indicates its possible therapeutic effect in neurological diseases related to neuroinflammation.


Assuntos
Astrócitos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Animais , Células Cultivadas , Regulação para Baixo , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Fator de Necrose Tumoral alfa/farmacologia
20.
World J Gastroenterol ; 21(16): 4852-63, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25944998

RESUMO

AIM: To determine the molecular mechanisms of Shugan decoction (SGD) in the regulation of colonic motility and visceral hyperalgesia (VHL) in irritable bowel syndrome (IBS). METHODS: The chemical compounds contained in SGD were measured by high-performance liquid chromatography. A rat model of IBS was induced by chronic water avoidance stress (WAS). The number of fecal pellets was counted after WAS and the pain pressure threshold was measured by colorectal distension. Morphological changes in colonic mucosa were detected by hematoxylin-eosin staining. The contents of tumor necrosis factor (TNF)-α in colonic tissue and calcitonin-gene-related peptide (CGRP) in serum were measured by ELISA. The protein expression of serotonin [5-hydroxytryptamide (5-HT)], serotonin transporter (SERT), chromogranin A (CgA) and CGRP in colon tissue was measured by immunohistochemistry. RESULTS: SGD inhibited colonic motility dysfunction and VHL in rats with IBS. Blockers of transient receptor potential (TRP) vanilloid 1 (TRPV1) (Ruthenium Red) and TRP ankyrin-1 (TRPA1) (HC-030031) and activator of protease-activated receptor (PAR)4 increased the pain pressure threshold, whereas activators of PAR2 and TRPV4 decreased the pain pressure threshold in rats with IBS. The effect of SGD on pain pressure threshold in these rats was abolished by activators of TRPV1 (capsaicin), TRPV4 (RN1747), TRPA1 (Polygodial) and PAR2 (AC55541). In addition, CGRP levels in serum and colonic tissue were both increased in these rats. TNF-α level in colonic tissue was also significantly upregulated. However, the levels of 5-HT, SERT and CgA in colonic tissue were decreased. All these pathological changes in rats with IBS were attenuated by SGD. CONCLUSION: SGD alleviated VHL and attenuated colon motility in IBS, partly by regulating TRPV1, TRPV4, TRPA1, PAR2, 5-HT, CgA and SERT, and reducing CGRP and TNF-α level.


Assuntos
Colo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Síndrome do Intestino Irritável/tratamento farmacológico , Receptor PAR-2/efeitos dos fármacos , Serotonina/metabolismo , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cromogranina A/metabolismo , Colo/inervação , Colo/metabolismo , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Mucosa Intestinal/inervação , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/fisiopatologia , Masculino , Limiar da Dor/efeitos dos fármacos , Pressão , Proteínas de Ligação a RNA/metabolismo , Ratos Sprague-Dawley , Receptor PAR-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Canais de Potencial de Receptor Transitório/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA