Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 107(Pt A): 309-323, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096248

RESUMO

The immune function of immune organs is extremely crucial for maintaining organism health status, which ultimately affects fish growth. Our previous study has found that dietary supplementation of (2-carboxyethyl)dimethylsulfonium Bromide (Br-DMPT) in non-fish meal (NFM) diet could promote the growth of grass carp (Ctenopharyngodon idella), whereas the underlying reason or mechanism for this results is largely unclear. Herein, we further explored whether dietary supplementation of Br-DMPT promoted fish growth is connected with the enhanced immune function in the immune organs (the head kidney, spleen and skin). In this study, 540 fish (216.49 ± 0.29 g) were irregularly distributed to six groups with three replicates (30 fish replicate-1) and fed corresponding diets group containing a fish meal (FM) diet group and five different NFM diets supplemented with gradational Br-DMPT (0-520.0 mg/kg level) group for 60 days. After the 60-days feeding trial, 8 fish from each replicate were selected and then conducted a challenge test with A. hydrophila for 14 days. Our results indicated that in the NFM diets, appropriate Br-DMPT: (1) significantly decreased the morbidity of skin haemorrhage and lesion after A. hydrophila infection (P < 0.05). (2) significantly improved the innate and adaptive immune components (lysozyme, complement 3, immunoglobulin M and antibacterial peptides et al.) (P < 0.05). (3) increased the gene expressions of main anti-inflammatory cytokines partially by referring to TOR signalling pathway, and decreased the gene expressions of main pro-inflammatory cytokines partially by referring to NF-kB signalling pathway (P < 0.05). Strikingly, no statistical difference could be found in the most of above immune parameters between 260.0 mg/kg Br-DMPT diet group and FM diet group (P > 0.05). Taken together, in non-fish meal diet, appropriate supplementation of Br-DMPT could improve the disease resistance capacity, non-specific immunity and ameliorate inflammation, and simultaneously could mitigate these adverse effects induced by the non-fish meal diet in fish immune organs. Moreover, this study may be helpful to decipher the underlying mechanisms of how Br-DMPT promote fish growth by immune organs and also provide scientific theoretical evidence for the future application of Br-DMPT as a new immunopotentiator in aquaculture industry.


Assuntos
Carpas/imunologia , Substâncias Protetoras/metabolismo , Compostos de Sulfônio/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Substâncias Protetoras/administração & dosagem , Compostos de Sulfônio/administração & dosagem
2.
Fish Shellfish Immunol ; 106: 228-240, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32771611

RESUMO

In this study, the protective effects and potential mechanisms of (2-Carboxyethyl) dimethylsulfonium Bromide (Br-DMPT) were evaluated in relation to the gill health status of on-growing young grass carp (Ctenopharyngodon idella). A total of 450 grass carp (216.49 ± 0.29 g) were randomly distributed into five treatments of three replicates each (30 fish per replicate) and were fed diets supplemented with gradational Br-DMPT (0-520.0 mg/kg levels) for 60 days. Subsequently, the fish were challenged with Flavobacterium columnare for 3 days, and the gills were sampled to evaluate antioxidant status and immune responses evaluation. Our results showed that, when compared to the control group, dietary supplementation with appropriate Br-DMPT levels resulted in the following: (1) decreased gill rot morbidity and improved gill histological symptoms after exposure to F. columnare (P < 0.05); (2) improved activities and gene expression levels (except GSTP2 gene) of antioxidant enzymes and decreased oxidative damage parameter values (reactive oxygen species, malondialdehyde and protein carbonyl) (P < 0.05), which may be partially associated with the nuclear factor-erythroid 2-related factor 2 (Nrf2) signalling pathway (P < 0.05); (3) increased lysozyme (LZ) and acid phosphatase (ACP) activities and complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and upregulated genes expressions of antibacterial peptides (liver-expressed antimicrobial peptide-2A, -2B, hepcidin, ß-defensin and mucin2) (P < 0.05); (4) upregulated gene expressions of anti-inflammatory cytokines (except IL--4/13B) that may be partially to the TOR/(S6K1, 4E-BP1) signalling pathway, and downregulated gene expressions of pro-inflammatory cytokines (except IL-12P35) may be partially to the IKK ß, γ/IκBα/NF-kB) signalling pathway (P < 0.05). Taken together, our results indicate that dietary supplementation with appropriate amounts of Br-DMPT may effectively protect on-growing grass carp from F. columnare by strengthening gill antioxidant capacity and immunity. Furthermore, based on measures of combatting gill rot, antioxidant indices (MDA) and immune indices (LZ), the dietary Br-DMPT supplementation levels for on-growing grass carp are recommended to be 291.14, 303.38 and 312.01 mg/kg diet, respectively.


Assuntos
Brometos/metabolismo , Carpas/imunologia , Substâncias Protetoras/metabolismo , Compostos de Sulfônio/metabolismo , Ração Animal/análise , Animais , Brometos/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Substâncias Protetoras/administração & dosagem , Distribuição Aleatória , Compostos de Sulfônio/administração & dosagem
3.
Fish Shellfish Immunol ; 87: 546-558, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30716522

RESUMO

The present study was the first to investigate the effects of dietary vitamin A (VA) on the intestinal physical barrier function associated with oxidation, antioxidant system, apoptosis and cell-cellular tight junction (TJ) in the proximal (PI), mid (MI) and distal (DI) intestines of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary VA for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 days. Results indicated that dietary VA deficiency caused oxidative damage to fish intestine partly by the reduced non-enzymatic antioxidant components glutathione (GSH) and VA contents as well as reduced antioxidant enzyme activities [not including manganese superoxide dismutase (MnSOD)]. Further results observed that the decreased antioxidant enzyme activities by VA deficiency were partly related to the down-regulation of their corresponding mRNA levels which were regulated by the down-regulation of NF-E2-related factor 2 (Nrf2) mRNA levels and up-regulation of kelch-like-ECH-associated protein (Keap1a) (rather than Keap1b) mRNA levels in three intestinal segments of fish. Meanwhile, VA deficiency up-regulated the mRNA levels of the apoptosis signalling [caspase-3, caspase-8, caspase-9 (rather than caspase-7)] associated with the inhibition of the target of rapamycin (TOR) signalling pathway in three intestinal segments of fish. Additionally, VA deficiency decreased the mRNA levels of TJ complexes [claudin-b, claudin-c, claudin-3, claudin-12, claudin-15a, occludin and zonula occludens-1 (ZO-1) in the PI, MI and DI, as well as claudin-7 and claudin-11a in the MI and DI] linked to the up-regulation of myosin light chain kinase (MLCK) signalling. These results suggested that VA deficiency impaired structural integrity in three intestinal segments of fish. Meanwhile, excessive VA also showed similar negative effects on these indexes. Taken together, the current study firstly demonstrated that VA deficiency impaired physical barrier functions associated with impaired antioxidant capacity, aggravated cell apoptosis and disrupted TJ complexes in the PI, MI and DI, but different segments performed different actions in fish. Based on protecting fish against protein oxidation, the optimal VA levels for grass carp were estimated to be 2622 IU/kg diet.


Assuntos
Carpas , Doenças dos Peixes/tratamento farmacológico , Intestinos/imunologia , Deficiência de Vitamina A/veterinária , Vitamina A/metabolismo , Vitaminas/metabolismo , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Doenças dos Peixes/induzido quimicamente , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/patologia , Infecções por Bactérias Gram-Negativas/veterinária , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/patologia , Distribuição Aleatória , Proteínas de Junções Íntimas/genética , Vitamina A/administração & dosagem , Deficiência de Vitamina A/induzido quimicamente , Deficiência de Vitamina A/tratamento farmacológico , Vitaminas/administração & dosagem
4.
Fish Shellfish Immunol ; 76: 333-346, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29544771

RESUMO

In this study, we investigated the effects of dietary myo-inositol on the intestinal immune barrier function and related signaling pathway in young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.33 ±â€¯0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila. The results indicated that compared with the optimal dietary myo-inositol level, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased lysozyme (LZ) and acid phosphatase (ACP) activities, as well as complement 3 (C3), C4 and immunoglobulin M (IgM) contents in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of young grass carp (P < 0.05). (2) down-regulated the mRNA levels of anti-microbial substance: liver expressed antimicrobial peptide (LEAP) 2A, LEAP-2B, hepcidin, ß-defensin-1 and mucin2 in the PI, MI and DI of young grass carp (P < 0.05). (3) up-regulated pro-inflammatory cytokines [IL-1ß (not in DI), TNF-α and IL-8], nuclear factor kappa B P65 (not NF-κB P52), c-Rel, IκB kinaseα (IKKα), IKKß and IKKγ mRNA levels in the PI, MI and DI of young grass carp (P < 0.05); and down-regulated pro-inflammatory cytokines IL-15 (not in DI) and inhibitor of κBα (IκBα) mRNA levels (P < 0.05). (4) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-10 (not in DI), IL-11, IL-4/13B (not IL-4/13A), TGF-ß1 and TGF-ß2], target of rapamycin (TOR), eIF4E-binding proteins 1 (4E-BP1) and ribosomal protein S6 kinase 1 (S6k1) in the PI, MI and DI of young grass carp (P < 0.05). All data indicated that myo-inositol deficiency could decrease fish intestine immunity and cause inflammation under infection of A. hydrophila. Finally, the optimal dietary myo-inositol levels for the ACP and LZ activities in the DI were estimated to be 415.1 and 296.9 mg/kg diet, respectively.


Assuntos
Carpas/genética , Carpas/imunologia , Inositol/deficiência , Intestinos/imunologia , Transdução de Sinais/imunologia , Complexo Vitamínico B/análise , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , NF-kappa B/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
Fish Shellfish Immunol ; 73: 121-132, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29222028

RESUMO

This study evaluated the effect of dietary sodium butyrate (SB) supplementation on the intestinal physical barrier function of young grass carp (Ctenopharyngodon idella). The fish were fed one powdery sodium butyrate (PSB) diet (1000.0 mg kg-1 diet) and five graded levels of microencapsulated sodium butyrate (MSB) diets: 0.0 (control), 500.0, 1000.0, 1500.0 and 2000.0 mg kg-1 diet for 60 days. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila to explore the effect of SB supplementation on intestinal physical barrier function and the potential mechanisms in fish. The results showed that optimal SB supplementation: (1) down-regulated the cysteine-aspartic protease-2 (caspase-2), caspase-3 (rather than PI), caspase-7, caspase-8 (rather than PI), caspase-9, fatty acid synthetase ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), B-cell lymphoma 2 associated X protein (Bax) and c-Jun Nterminal protein kinase (JNK) mRNA levels, up-regulated the B-cell lymphoma protein-2 (Bcl-2) (rather than PI), inhibitor of apoptosis proteins (IAP) and myeloid cell leukemia-1 (Mcl-1) mRNA levels in the intestine (P < 0.05), inhibited the intestinal cell apoptosis, maintained the intestine cell structure integrity; (2) increased NF-E2-related factor 2 (Nrf2) mRNA levels and nucleus protein levels, and down-regulated kelch-like-ECH-associated protein (Keap1b) (rather than Keap1a) mRNA levels in the intestine, up-regulated copper/zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase 1a (GPx1a), GPx1b, GPx4a, GPx4b, glutathione S-transferases R (GSTR), GSTP1, GSTP2, GSTO1, GSTO2 and glutathione reductase (GR) mRNA levels in the intestine, increased the corresponding antioxidant enzymes activity (P < 0.05), thus enhancing the ability of scavenging free radicals and decreasing the reactive oxygen species (ROS) content, decreasing the lipid and protein peroxidation, as well as alleviating oxidative damage; (3) down-regulated the molecule myosin light-chain kinase (MLCK) mRNA levels in the intestine, and up-regulated the occludin, zonula occludens-1 (ZO-1), ZO-2, claudin-b, claudin-c, claudin-f, claudin-3c (rather than PI), claudin-7a, claudin-7b and claudin-11 mRNA levels, down-regulated claudin-12, claudin-15a and claudin-15b mRNA levels (P < 0.05), thus maintaining the structural integrity between cells. This study suggests that SB supplementation could improve fish intestinal physical barrier function. Furthermore, according to the positive effect, MSB was superior to PSB on improving intestinal physical barrier function of fish. Finally, based on protein carbonyl content in the PI, the optimal SB supplementation (MSB as SB source) for young grass carp was estimated to be 338.8 mg kg-1 diet.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Butírico/metabolismo , Carpas/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/efeitos dos fármacos , Intestinos/imunologia , Transdução de Sinais/imunologia , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ácido Butírico/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Infecções por Bactérias Gram-Negativas/imunologia , Intestinos/efeitos dos fármacos , Distribuição Aleatória , Transdução de Sinais/genética , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo
6.
Fish Shellfish Immunol ; 67: 475-492, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28610850

RESUMO

In this study, we investigated the effects of dietary myo-inositol on the growth and intestinal physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.83 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with optimal myo-inositol levels, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes [not glutathione-S-transferase (gst) p1 and gstp2] and NF-E2-related factor 2 (nrf2), whereas up-regulated the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents, and the mRNA levels of Kelch-like-ECH-associated protein 1 (keap1) in three intestinal segments of young grass carp (P < 0.05). (2) Up-regulated cysteinyl aspartic acid-protease (caspase)-2, -3, -7, -8, -9, apoptotic protease activating factor-1 (apaf-1), Bcl2-associated X protein (bax), fas ligand (fasl), gen-activated protein kinase (p38mapk) and c-Jun N-terminal protein kinase (jnk) mRNA levels, whereas down-regulated B-cell lymphoma-2 (bcl-2), inhibitor of apoptosis proteins (iap) and myeloid cell leukemia-1 (mcl-1) mRNA levels in three intestinal segments of young grass carp (P < 0.05). (3) Down-regulated mRNA levels of cell cycle proteins cyclin b, cyclin d, cyclin e and E2F transcription factor 4 (e2f4) in three intestinal segments of young grass carp (P < 0.05). (4) Down-regulated the mRNA levels of zonula occludens (zo) 1, zo-2, occludin, claudin-b, -c, -f, -3c, -7a, -7b as well as -11, and up-regulated the mRNA levels of claudin-12, -15a (not -15b) and myosin light chain kinase (mlck) in three intestinal segments of young grass carp (P < 0.05). All above data indicated that dietary myo-inositol deficiency could damage physical barrier function in three intestinal segments of fish. Finally, the myo-inositol requirements based on the percent weight gain (PWG), reactive oxygen species (ROS) contents in the proximal intestine (PI), relative mRNA levels of caspase-2 (PI), cyclin b (MI) as well as claudin-b (PI) were estimated to be 276.7, 304.1, 327.9, 416.7 and 313.2 mg/kg diet, respectively.


Assuntos
Antioxidantes/metabolismo , Carpas/fisiologia , Carboidratos da Dieta/metabolismo , Proteínas de Peixes/metabolismo , Inositol/deficiência , Transdução de Sinais , Ração Animal/análise , Animais , Apoptose/efeitos dos fármacos , Carpas/genética , Carpas/crescimento & desenvolvimento , Proliferação de Células/efeitos dos fármacos , Dieta/veterinária , Suplementos Nutricionais/análise , Intestinos/efeitos dos fármacos , Distribuição Aleatória , Junções Íntimas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA