Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Drug Des Devel Ther ; 17: 2593-2611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664450

RESUMO

Background: Psoriasis is a complex autoimmune disease. Frequent interactions between epidermal and immune cells are likely to be responsible for the strong heterogeneity of psoriasis. Therefore, our work aims to build on current knowledge and further search for new molecular mechanisms related to psoriasis pathogenesis in order to develop new targeted drugs. Methods: Data from psoriasis samples were obtained from the Gene Expression Omnibus (GEO) database, and batch effects were corrected using the "Combat" algorithm in the "SVA" package. Functional annotation of differential genes in psoriasis was performed by Gene set enrichment analysis (GSEA). Core functional modules were identified using the Multiscale Embedded Gene Co-Expression Network Analysis (MEGENA) algorithm for selection from the differential gene interaction network. The expression and potential function of Rh Family C Glycoprotein (RHCG) was predicted in single cell data by the "Seurat" package and validated in psoriasis samples by multiplex immunofluorescence. In addition, the regulatory function of HOP Homeobox (HOPX) on RHCG in keratinocytes was confirmed using RNA interference. Using immune infiltration analysis, RHCG and DC cells were analyzed for their association. Finally, the molecular mechanisms of treatment of psoriasis using Tripterygii Radix (TR) and Cinnamomi Ramulus (CR) were explored through network pharmacology and experimental validation. Results: Immune response (represented by C1_2) and collagen matrix formation (represented by C1_3) were identified as two important pathogenic factors in psoriasis and helped to define new biological subtypes of psoriasis. One important psoriasis hub gene, RHCG, was obtained and found to be closely associated with keratinocyte differentiation as well as DC cell maturation. And RHCG was regulated by HOPX in keratinocytes. In addition, the mechanism of action of CR and TR in the treatment of psoriasis was tentatively confirmed to be related to TRPV3, NFKB2, and YAP1. Conclusions: Our study identifies a new causal disease gene (RHCG) and offers potential alternatives for the treatment of psoriasis.


Assuntos
Doenças Autoimunes , Proteínas de Transporte de Cátions , Humanos , Algoritmos , Diferenciação Celular , Bases de Dados Factuais , Glicoproteínas , Glicoproteínas de Membrana
2.
Artigo em Inglês | MEDLINE | ID: mdl-35754697

RESUMO

Osteoclasts (OCs) have been the unique cell type exhibiting the bone-resorption activity in body. It is important to identify drugs to resist osteoclastogenesis to manage the bone-loss disorders. Huangqi Sanxian decoction (HQSXD) is utilized for the treatment of postmenopausal osteoporosis (PMOP) for a long history in East Asia. This work aimed to examine HQSXD's activity in OC differentiation. Based on staining with tartrate-resistant acid phosphatase (TRAP), it was found that HQSXD suppressed OC generation under the induction of RANKL produced in the bone marrow-derived monocytes/macrophages (BMMs), with no cytotoxic effect. Later analysis like molecular exploration and network pharmacology (NP) suggested the role of HQSXD in suppressing genes associated with osteoclastogenesis via PI3K/Akt-mediated mechanism dose-dependently. This work might illustrate the molecular pharmacological mechanism involved in HQSXD's effect on treating OC-associated disorders. Moreover, NP was found to modernize traditional Chinese medicine (TCM) research.

3.
Plants (Basel) ; 11(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35161364

RESUMO

Cytochrome P450 (CYP) catalyzes a wide variety of monooxygenation reactions in plant primary and secondary metabolisms. Land plants contain CYP703, belonging to the CYP71 clan, which catalyzes the biochemical pathway of fatty acid hydroxylation, especially in male reproductive tissues. Korean/Asian ginseng (Panax ginseng Meyer) has been regarded as one of important medicinal plant for a long time, however the molecular mechanism is less known on its development. In this study, we identified and characterized a CYP703A gene in P. ginseng (PgCYP703A4), regarding reproductive development. PgCYP703A4 shared a high-sequence identity (81-83%) with predicted amino acid as CYP703 in Dancus carota, Pistacia vera, and Camellia sinensis as well as 76% of amino acid sequence identity with reported CYP703 in Arabidopsis thaliana and 75% with Oryza sativa. Amino acid alignment and phylogenetic comparison of P. ginseng with higher plants and known A. thaliana members clearly distinguish the CYP703 members, each containing the AATDTS oxygen binding motif and PERH as a clade signature. The expression of PgCYP704B1 was only detected in P. ginseng flower buds, particularly in meiotic cells and the tapetum layer of developing anther, indicating the conserved role on male reproduction with At- and Os- CYP703. To acquire the clue of function, we transformed the PgCYP703A4 in A. thaliana. Independent overexpressing lines (PgCYP703A4ox) increased silique size and seed number, and altered the contents of fatty acids composition of cutin monomer in the siliques. Our results indicate that PgCYP703A4 is involved in fatty acid hydroxylation which affects cutin production and fruit size.

4.
Microbiol Spectr ; 9(2): e0013821, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34523990

RESUMO

Cigarettes and opium contain chemicals and particulate matter that may modify the oral microbiota. This study aimed to investigate the association between cigarette and opium use with the oral microbiota. A total of 558 participants were recruited from Iran between 2011 and 2015. Individuals were categorized as never cigarette nor opium users, ever cigarette-only smokers, ever opium-only users, and ever both cigarette and opium users. Participants provided saliva samples for 16S rRNA gene sequencing. Logistic regression, microbiome regression-based kernel association test (MiRKAT), and zero-inflated beta regression models were calculated. For every increase in 10 observed amplicon sequence variants (ASVs), the odds for being a cigarette-only smoker, opium-only user, and both user compared to never users decreased by 9% (odds ratio [OR] = 0.91; 95% confidence interval [95% CI] = 0.86 to 0.97), 13% (OR = 0.87; 95% CI = 0.75 to 1.01), and 12% (OR = 0.88; 95% CI = 0.80 to 0.96), respectively. The microbial communities differed by cigarette and opium use as indicated by MiRKAT models testing the three beta-diversity matrices (P < 0.05 for all). Three genera were less likely and one genus was more likely to be detected in cigarette-only smokers or opium-only users than in never users. The relative abundance of the phylum Actinobacteria (never, 14.78%; both, 21.20%) was higher and the phyla Bacteroidetes (never, 17.63%; both, 11.62%) and Proteobacteria (never, 9.06%; both, 3.70%) were lower in users of both cigarettes and opium, while the phylum Firmicutes (never, 54.29%; opium, 65.49%) was higher in opium-only users. Cigarette and opium use was associated with lower alpha-diversity, overall oral microbiota community composition, and both the presence and relative abundance of multiple taxa. IMPORTANCE Cigarette smoking and opium use are associated with periodontal disease caused by specific bacteria such as Porphyromonas gingivalis, which suggests a link between cigarette smoking and opium use and the oral microbiota. Alterations of the oral microbiota in cigarette smokers compared to nonsmokers have been reported, but this has not been studied across diverse populations. Additionally, the association of opium use with the oral microbiota has not been investigated to date. We conducted this study to investigate differences in the oral microbiota between ever users of cigarettes only, opium only, and both cigarettes and opium and never users of cigarettes and opium in Iran. Lower alpha-diversity, distinct overall oral microbial communities, and the presence and relative abundance of multiple taxa have been found for users of cigarettes and/or opium.


Assuntos
Bactérias/classificação , Fumar Cigarros/efeitos adversos , Microbiota/efeitos dos fármacos , Boca/microbiologia , Dependência de Ópio/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Feminino , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Ópio/efeitos adversos , Doenças Periodontais/microbiologia
5.
Med Sci Monit ; 27: e927421, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33513128

RESUMO

BACKGROUND This study explored the mechanism of action of Ephedrae Herba-Cinnamomi Ramulus couplet medicine (MGCM) at the pharmacological level in the treatment of psoriasis. MATERIAL AND METHODS The active ingredients in MGCM were mined through literature retrieval and the BATMAN-TCM database, and potential targets were predicted. In addition, targets associated with psoriasis were acquired using multiple disease-related databases. Thereafter, an interaction network between candidate MGCM targets and the known psoriasis-associated targets was constructed based on the protein-protein interaction (PPI) data, using the STRING database. Then, the topological parameter degree was determined for mining the core targets for MGCM in the treatment of psoriasis, which also represented the major hubs within the PPI network. In addition, the core networks of targets and ingredients were constructed using Cytoscape software to apply MGCM in the treatment for psoriasis. These core targets were then analyzed for Gene Ontology biological processes and Kyoto Encyclopedia of Genes and Genomes pathway enrichment using OmicShare. RESULTS The ingredient-target core network of MGCM for treating psoriasis was constructed; it contained 52 active ingredients and corresponded to 19 core targets. In addition, based on enrichment analysis, these core targets were majorly enriched for several biological processes (immuno-inflammatory responses, leukocyte differentiation, energy metabolism, angiogenesis, and programmed cell death) together with the relevant pathways (Janus kinase-signal transducer and activator of transcription, toll-like receptors, nuclear factor kappaB, vascular endothelial growth factor, and peroxisome proliferator-activated receptor), thus identifying the possible mechanism of action of MGCM in treating psoriasis. CONCLUSIONS The present network pharmacology study indicated that MGCM alleviates various pathological factors of psoriasis through multiple compounds, multiple targets, and multiple pathways.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Ephedra sinica/metabolismo , Psoríase/tratamento farmacológico , Bases de Dados Factuais , Bases de Dados Genéticas , Medicamentos de Ervas Chinesas/química , Ephedra sinica/química , Ontologia Genética , Humanos , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Software
6.
Plant Mol Biol ; 104(1-2): 187-201, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681357

RESUMO

KEY MESSAGE: The mutation of FAX1 (Fatty Acid Export 1) disrupts ROS homeostasis and suppresses transcription activity of DYT1-TDF1-AMS-MS188 genetic network, leading to atypical tapetum PCD and defective pollen formation in Arabidopsis. Fatty acids (FAs) have multiple important biological functions and exert diverse cellular effects through modulating Reactive Oxygen Species (ROS) homeostasis. Arabidopsis FAX1 (Fatty Acid Export 1) mediates the export of de novo synthesized FA from chloroplast and loss of function of FAX1 impairs male fertility. However, mechanisms underlying the association of FAX1-mediated FA export with male sterility remain enigmatic. In this study, by using an integrated approach that included morphological, cytological, histological, and molecular analyses, we revealed that loss of function of FAX1 breaks cellular FA/lipid homeostasis, which disrupts ROS homeostasis and suppresses transcriptional activation of the DYT1-TDF1-AMS-MS188 genetic network of anther development, impairing tapetum development and pollen wall formation, and resulting in male sterility. This study provides new insights into the regulatory network for male reproduction in plants, highlighting an important role of FA export-mediated ROS homeostasis in the process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Membrana/metabolismo , Pólen/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Redes Reguladoras de Genes , Proteínas de Membrana/genética , Mutação , Fenótipo , Pólen/genética , Reprodução , Fatores de Transcrição
7.
Mol Biol Rep ; 47(6): 4507-4518, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32424525

RESUMO

Cytochrome P450 monooxygenase 704B (CYP704B), a member of the CYP86 clan, was found to be needed in Arabidopsis and rice to biosynthesize precursors of sporopollenin through oxidizing fatty acids. In the present study, we cloned and characterized a CYP704B gene in Panax ginseng, named PgCYP704B1. It shared high sequence identity (98-99%) with CYP704 of Arabidopsis, Theobroma cacao, and Morus notabilis. The phylogenetic comparison of ginseng and higher plants between the members of CYP86 clan revealed that ginseng CYP704 was categorized as a group of CYP704B with dicot plants. The expression of PgCYP704B1 is low in the stem, leaf, and fruit, and high in flower buds, particularly detected in the young gametic cell and tapetum layer of the developing anther. Arabidopsis plants overexpressing PgCYP704B1 improved plant biomass such as plant height, siliques and seed number and size. A cytological observation by transverse and longitudinal semi-thin sections of the siliques cuticles revealed that the cell length increased. Furthermore a chemical analysis showed that PgCYP704B1ox lines increased their cutin monomers contents in the siliques. Our results suggest that PgCYP704B1 has a conserved role during male reproduction for fatty acid biosynthesis and its overexpression increases cutin monomers in siliques that eventually could be used for seed production.


Assuntos
Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Panax/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Biomassa , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lipídeos de Membrana/metabolismo , Panax/metabolismo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética
8.
Biology (Basel) ; 10(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396370

RESUMO

Plant metabolomics plays important roles in both basic and applied studies regarding all aspects of plant development and stress responses. With the improvement of living standards, people need high quality and safe food supplies. Thus, understanding the pathways involved in the biosynthesis of nutritionally and healthily associated metabolites in plants and the responses to plant-derived biohazards in humans is of equal importance to meet people's needs. For each, metabolomics has a vital role to play, which is discussed in detail in this review. In addition, the core elements of plant metabolomics are highlighted, researches on metabolomics-based crop improvement for nutrition and safety are summarized, metabolomics studies on plant natural products including traditional Chinese medicine (TCM) for health promotion are briefly presented. Challenges are discussed and future perspectives of metabolomics as one of the most important tools to promote human nutrition and health are proposed.

9.
Plant Physiol ; 182(2): 962-976, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31772077

RESUMO

The timely programmed cell death (PCD) of the tapetum, the innermost somatic anther cell layer in flowering plants, is critical for pollen development, including the deposition and patterning of the pollen wall. Although several genes involved in tapetal PCD and pollen wall development have been characterized, the underlying regulatory mechanism remains elusive. Here we report that PERSISTENT TAPETAL CELL2 (PTC2), which encodes an AT-hook nuclear localized protein in rice (Oryza sativa), is required for normal tapetal PCD and pollen wall development. The mutant ptc2 showed persistent tapetal cells and abnormal pollen wall patterning including absent nexine, collapsed bacula, and disordered tectum. The defective tapetal PCD phenotype of ptc2 was similar to that of a PCD delayed mutant, ptc1, in rice, while the abnormal pollen wall patterning resembled that of a pollen wall defective mutant, Transposable Element Silencing Via AT-Hook, in Arabidopsis (Arabidopsis thaliana). Levels of anther cutin monomers in ptc2 anthers were significantly reduced, as was expression of a series of lipid biosynthetic genes. PTC2 transcript and protein were shown to be present in the anther after meiosis, consistent with the observed phenotype. Based on these data, we propose a model explaining how PTC2 affects anther and pollen development. The characterization of PTC2 in tapetal PCD and pollen wall patterning expands our understanding of the regulatory network of male reproductive development in rice and will aid future breeding approaches.


Assuntos
Apoptose/genética , Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/genética , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Motivos AT-Hook/genética , Arabidopsis/genética , Núcleo Celular/metabolismo , Fragmentação do DNA , Flores/genética , Flores/metabolismo , Flores/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes , Genótipo , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Microscopia Eletrônica de Varredura , Mutação , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Pólen/genética , Pólen/metabolismo , Pólen/ultraestrutura , RNA-Seq , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
New Phytol ; 225(1): 356-375, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433495

RESUMO

Degeneration of apical spikelets and reduced panicle fertility are common reasons for low seed-setting rate in rice (Oryza sativa). However, little is known about the underlying molecular mechanisms. Here, we report a novel degenerated panicle and partial sterility 1 (dps1) mutant that showed panicle apical degeneration and reduced fertility in middle spikelets. dps1 plants were characterized by small whitish anthers with altered cuticle morphology and absence of pollen grains. Amounts of cuticular wax and cutin were significantly reduced in dps1 anthers. Panicles of dps1 plants showed an accumulation of reactive oxygen species (ROS), lower antioxidant activity, and increased programmed cell death. Map-based cloning revealed that DPS1 encodes a mitochondrial-localized protein containing a cystathionine ß-synthase domain that showed the highest expression in panicles and anthers. DPS1 physically interacted with mitochondrial thioredoxin proteins Trx1 and Trx20, and it participated in ROS scavenging. Global gene expression analysis in dps1 revealed that biological processes related to fatty acid metabolism and ROS homeostasis were significantly affected, and the expression of key genes involved in wax and cutin biosynthesis were downregulated. These results suggest that DPS1 plays a vital role in regulating ROS homeostasis, anther cuticle formation, and panicle development in rice.


Assuntos
Cistationina beta-Sintase/química , Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Morte Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/toxicidade , Lipídeos de Membrana/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Pólen/efeitos dos fármacos , Pólen/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Reprodução/efeitos dos fármacos , Transcriptoma/genética , Ceras/metabolismo
11.
New Phytol ; 225(2): 807-822, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31486533

RESUMO

In flowering plants, pollen wall is a specialized extracellular cell-wall matrix surrounding male gametophytes and acts as a natural protector of pollen grains against various environmental and biological stresses. The formation of pollen wall is a complex but well-regulated process, which involves the action of many different genes. However, the genetic and molecular mechanisms underlying this process remain largely unknown. In this study, we isolated and characterized a novel rice male sterile mutant, defective pollen wall3 (dpw3), which displays smaller and paler anthers with aborted pollen grains. DPW3 encodes a novel membrane-associated alpha integrin-like protein conserved in land plants. DPW3 is ubiquitously expressed in anther developmental stages and its protein is localized to the plasma membrane, endoplasmic reticulum (ER) and Golgi. Anthers of dpw3 plants exhibited unbalanced anther cuticular profile, abnormal Ubisch bodies, disrupted callose deposition, defective pollen wall formation such as abnormal microspore plasma membrane undulation and defective primexine formation, resulting in pollen abortion and complete male sterility. Our findings revealed a novel and vital role of alpha integrin-like proteins in plant male reproduction.


Assuntos
Cadeias alfa de Integrinas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Sequência de Bases , Membrana Celular/metabolismo , Sequência Conservada , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Oryza/ultraestrutura , Fenótipo , Filogenia , Epiderme Vegetal/metabolismo , Pólen/genética , Pólen/ultraestrutura , Nicotiana/citologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-31781265

RESUMO

BACKGROUND: Kang-bai-ling (KBL), a Chinese patent medicine, has been demonstrated as an effective therapy for vitiligo in China. However, the pharmacological mechanisms of KBL have not been completely elucidated. METHODS: In this study, the potential multicomponent, multitarget, and multipathway mechanism of KBL against vitiligo was clarified by using network pharmacology-based strategy. In brief, potential targets of KBL were collected based on TCMSP databases, followed by network establishment concerning the interactions of potential targets of KBL with well-known therapeutic targets of vitiligo by using protein-protein interaction (PPI) data. As a result, key nodes with higher level of seven topological parameters, including "degree centrality (DC)," "betweenness centrality (BC)," "closeness centrality (CC)," "eigenvector centrality (EC)," "network centrality (NC)," and "local average connectivity (LAC)" were identified as the main targets in the network, followed by subsequent incorporation into the ClueGO for GO and KEGG signaling pathway enrichment analysis. RESULTS: In accordance with the topological importance, a total of 23 potential targets of KBL on vitiligo were identified as main hubs. Additionally, enrichment analysis suggested that targets of KBL on vitiligo were mainly clustered into multiple biological processes (associated with DNA translation, lymphocyte differentiation and activation, steroid biosynthesis, autoimmune and systemic inflammatory reaction, neuron apoptosis, and vitamin deficiency) and related pathways (TNF, JAK-STAT, ILs, TLRs, prolactin, and NF-κB), indicating the underlying mechanisms of KBL on vitiligo. CONCLUSION: In this work, we successfully illuminated the "multicompounds, multitargets" therapeutic action of KBL on vitiligo by using network pharmacology. Moreover, our present outcomes might shed light on the further clinical application of KBL on vitiligo treatment.

13.
Plant Cell Rep ; 37(3): 393-410, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29150823

RESUMO

KEY MESSAGE: The dynamics of metabolites from leaves to roots of Panax ginseng during development has revealed the tissue-specific and year-specific metabolic networks. Being an essential Oriental medicinal plant, ginseng (Panax ginseng Meyer) is a slow-growing perennial herb-accumulating pharmaceutically active metabolites such as ginsenosides in roots during growth. However, little is known about how ginseng plants survive in the harsh environments such as winter cold and summer heat for a longer period and accumulates those active metabolites as the plant grows. To understand the metabolic kinetics in both source and sink organs such as leaves and roots of ginseng plant, respectively, and to assess the changes in ginsenosides biosynthesis during ginseng growth, we investigated the metabolic profiles from leaves and roots of 1-, 4-, and 6-year-old field-grown ginseng plants. Using an integrated non-targeted metabolomic approach, we identified in total 348 primary and secondary metabolites, which provided us for the first time a global metabolomic assessment of ginseng during growth, and morphogenesis. Strikingly, the osmoprotectants and oxidized chemicals were highly accumulated in 4- and 6-year-old ginseng leaves suggested that ginseng develop a wide range of metabolic strategies to adapt unfavorable conditions as they mature. In 6-year-old plants, ginsenosides were decreased in leaves but increased in roots up to 1.2- to sixfold, supporting the view that there is a long-distance transport of ginsenosides from leaves to roots as ginseng plants mature. Our findings provide insights into the metabolic kinetics during the development of ginseng plant and this could complement the pharmacological importance of ginseng and its compounds according to their age.


Assuntos
Adaptação Fisiológica , Redes e Vias Metabólicas , Metabolômica/métodos , Panax/metabolismo , Cinética , Panax/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo
14.
J Integr Plant Biol ; 59(9): 612-628, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28783252

RESUMO

Lipid and phenolic metabolism are important for pollen exine formation. In Arabidopsis, polyketide synthases (PKSs) are essential for both sporopollenin biosynthesis and exine formation. Here, we characterized the role of a polyketide synthase (OsPKS2) in male reproduction of rice (Oryza sativa). Recombinant OsPKS2 catalyzed the condensation of fatty acyl-CoA with malonyl-CoA to generate triketide and tetraketide α-pyrones, the main components of pollen exine. Indeed, the ospks2 mutant had defective exine patterning and was male sterile. However, the mutant showed no significant reduction in sporopollenin accumulation. Compared with the WT (wild type), ospks2 displayed unconfined and amorphous tectum and nexine layers in the exine, and less organized Ubisch bodies. Like the pksb/lap5 mutant of the Arabidopsis ortholog, ospks2 showed broad alterations in the profiles of anther-related phenolic compounds. However, unlike pksb/lap5, in which most detected phenolics were substantially decreased, ospks2 accumulated higher levels of phenolics. Based on these results and our observation that OsPKS2 is unable to fully restore the exine defects in the pksb/lap5, we propose that PKS proteins have functionally diversified during evolution. Collectively, our results suggest that PKSs represent a conserved and diversified biochemical pathway for anther and pollen development in higher plants.


Assuntos
Oryza/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Policetídeo Sintases/metabolismo , Proteínas de Arabidopsis , Metabolismo dos Lipídeos , Oryza/enzimologia , Oryza/genética , Oryza/ultraestrutura , Fenóis/metabolismo , Fenótipo , Pólen/ultraestrutura
15.
Plant J ; 91(2): 263-277, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28378445

RESUMO

Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1-4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild-type exine has two continuous layers; but np1-4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1-4 anthers, and less cuticular wax. Map-based cloning suggested that NP1 encodes a putative glucose-methanol-choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1-4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.


Assuntos
Flores/fisiologia , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/fisiologia , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/genética , Carotenoides/metabolismo , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Meiose , Mutação , Plantas Geneticamente Modificadas , Pólen/genética
16.
Plant Physiol ; 173(1): 240-255, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246096

RESUMO

Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall.


Assuntos
Aciltransferases/metabolismo , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Parede Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Oryza/genética , Oryza/ultraestrutura , Fenóis/metabolismo , Fenótipo , Pólen/ultraestrutura , Transporte Proteico , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Ceras/metabolismo
17.
Plant Mol Biol ; 93(1-2): 209-225, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27826761

RESUMO

KEY MESSAGE: We herein demonstrated two of the Arabidopsis acyl-CoA-binding proteins (ACBPs), AtACBP4 and AtACBP5, both function in floral lipid metabolism and they may possibly play complementary roles in Arabidopsis microspore-to-pollen development. Histological analysis on transgenic Arabidopsis expressing ß-glucuronidase driven from the AtACBP4 and AtACBP5 promoters, as well as, qRTPCR analysis revealed that AtACBP4 was expressed at stages 11-14 in the mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatographyflame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds in comparison to the wild type (Col-0). Fatty acid profiling demonstrated a decline in stearic acid and an increase in linolenic acid in acbp4 and acbp4acbp5 buds, respectively, over Col-0. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter activity for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) mapped at AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. In Arabidopsis thaliana, six acyl-CoA-binding proteins (ACBPs), designated as AtACBP1 to AtACBP6, have been identified to function in plant stress and development. AtACBP4 and AtACBP5 represent the two largest proteins in the AtACBP family. Despite having kelch-motifs and sharing a common cytosolic subcellular localization, AtACBP4 and AtACBP5 differ in spatial and temporal expression. Histological analysis on transgenic Arabidopsis expressing ß-glucuronidase driven from the respective AtACBP4 and AtACBP5 promoters, as well as, qRT-PCR analysis revealed that AtACBP4 was expressed at stages 11-14 in mature pollen, while AtACBP5 was expressed at stages 7-10 in the microspores and tapetal cells. Immunoelectron microscopy using AtACBP4- or AtACBP5-specific antibodies further showed that AtACBP4 and AtACBP5 were localized in the cytoplasm. Chemical analysis of bud wax and cutin using gas chromatography-flame ionization detector and GC-mass spectrometry analyses revealed the accumulation of cuticular waxes and cutin monomers in acbp4, acbp5 and acbp4acbp5 buds, in comparison to the wild type. Analysis of inflorescences from acbp4 and acbp5 revealed that there was an increase of AtACBP5 expression in acbp4, and an increase of AtACBP4 expression in acbp5. Deletion analysis of the AtACBP4 and AtACBP5 5'-flanking regions indicated the minimal promoter region for AtACBP4 (-145/+103) and AtACBP5 (-181/+81). Electrophoretic mobility shift assays identified a pollen-specific cis-acting element POLLEN1 (AGAAA) within AtACBP4 (-157/-153) which interacted with nuclear proteins from flower and this was substantiated by DNase I footprinting. These results suggest that AtACBP4 and AtACBP5 both function in floral lipidic metabolism and they may play complementary roles in Arabidopsis microspore-to-pollen development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Proteínas de Transporte/fisiologia , Metabolismo dos Lipídeos , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatografia Gasosa , Ensaio de Desvio de Mobilidade Eletroforética , Flores/genética , Flores/metabolismo , Flores/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Imuno-Histoquímica , Plantas Geneticamente Modificadas/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento
18.
Plant Physiol ; 172(1): 341-57, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27436829

RESUMO

Pollen allergies have long been a major pandemic health problem for human. However, the evolutionary events and biological function of pollen allergens in plants remain largely unknown. Here, we report the genome-wide prediction of pollen allergens and their biological function in the dicotyledonous model plant Arabidopsis (Arabidopsis thaliana) and the monocotyledonous model plant rice (Oryza sativa). In total, 145 and 107 pollen allergens were predicted from rice and Arabidopsis, respectively. These pollen allergens are putatively involved in stress responses and metabolic processes such as cell wall metabolism during pollen development. Interestingly, these putative pollen allergen genes were derived from large gene families and became diversified during evolution. Sequence analysis across 25 plant species from green alga to angiosperms suggest that about 40% of putative pollen allergenic proteins existed in both lower and higher plants, while other allergens emerged during evolution. Although a high proportion of gene duplication has been observed among allergen-coding genes, our data show that these genes might have undergone purifying selection during evolution. We also observed that epitopes of an allergen might have a biological function, as revealed by comprehensive analysis of two known allergens, expansin and profilin. This implies a crucial role of conserved amino acid residues in both in planta biological function and allergenicity. Finally, a model explaining how pollen allergens were generated and maintained in plants is proposed. Prediction and systematic analysis of pollen allergens in model plants suggest that pollen allergens were evolved by gene duplication and then functional specification. This study provides insight into the phylogenetic and evolutionary scenario of pollen allergens that will be helpful to future characterization and epitope screening of pollen allergens.


Assuntos
Alérgenos/genética , Arabidopsis/genética , Oryza/genética , Proteínas de Plantas/genética , Plantas/genética , Pólen/genética , Alérgenos/classificação , Alérgenos/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta/genética , Humanos , Oryza/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo , Pólen/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
19.
Subcell Biochem ; 86: 315-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27023241

RESUMO

Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.


Assuntos
Metabolismo dos Lipídeos , Plantas/metabolismo , Pólen/metabolismo
20.
Plant Signal Behav ; 11(3): e1136764, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26906115

RESUMO

The function of ATP Binding Cassette G (ABCG) transporters in the regulation of plant vegetative organs development has been well characterized in various plant species. In contrast, their function in reproductive development particularly male reproductive development received considerably less attention till some ABCG transporters was reported to be associated with anther and pollen wall development in Arabidopsis thaliana and rice (Oryza sativa) during the past decade. This mini-review summarizes current knowledge of ABCG transporters regarding to their roles in male reproduction and underlying genetic and biochemical mechanisms, which makes it evident that ABCG transporters represent one of those conserved and divergent components closely related to male reproduction in plants. This mini-review also discusses the current challenges and future perspectives in this particular field.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Arabidopsis/fisiologia , Oryza/fisiologia , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Oryza/genética , Oryza/metabolismo , Pólen/genética , Pólen/crescimento & desenvolvimento , Pólen/metabolismo , Reprodução/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA