Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1302817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348269

RESUMO

Introduction: Dendrobine, a valuable alkaloid found in Dendrobium nobile, possesses significant pharmaceutical potential. Methods: In this study, we explored innovative approaches to enhance dendrobine production by utilizing endophytic fungi in a Temporary Immersion Bioreactor System (TIBS, Nanjing BioFunction Co. Ltd., China) and traditional test bottles. Dendrobine was unequivocally identified and characterised in D. nobile co-culture seedlings through UHPLC analysis and LC-MS qTOF analysis, supported by reference standards. Results: The CGTB (control group) and EGTB (experimental group) 12-month-old D. nobile seedlings exhibited similar peak retention times at 7.6±0.1 minutes, with dendrobine identified as C16H25NO2 (molecular weight 264.195). The EGTB, co-cultured with Trichoderma longibrachiatum (MD33), displayed a 2.6-fold dendrobine increase (1804.23 ng/ml) compared to the CGTB (685.95 ng/ml). Furthermore, a bioanalytical approach was applied to investigate the mono-culture of T. longibrachiatum MD33 with or without D. nobile seedlings in test bottles. The newly developed UHPLC-MS method allowed for dendrobine identification at a retention time of 7.6±0.1 minutes for control and 7.6±0.1 minutes for co-culture. Additionally, we explored TIBS to enhance dendrobine production. Co-culturing D. nobile seedlings with Trichoderma longibrachiatum (MD33) in the TIBS system led to a substantial 9.7-fold dendrobine increase (4415.77 ng/ml) compared to the control (454.01 ng/ml) after just 7 days. The comparative analysis of dendrobine concentration between EGTB and EGTIBS highlighted the remarkable potential of TIBS for optimizing dendrobine production. Future research may focus on scaling up the TIBS approach for commercial dendrobine production and investigating the underlying mechanisms for enhanced dendrobine biosynthesis in D. nobile. The structural elucidation of dendrobine was achieved through 1H and 13C NMR spectroscopy, revealing a complex array of proton environments and distinct carbon environments, providing essential insights for the comprehensive characterization of the compound. Discussion: These findings hold promise for pharmaceutical and industrial applications of dendrobine and underline the role of endophytic fungi in enhancing secondary metabolite production in medicinal plants.

2.
J Ethnopharmacol ; 322: 117592, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38097026

RESUMO

ETHNOPHARMACOLOGICAL RELEVANT: Dendrobium is a traditional and precious Chinese medicinal herb. The Compendium of Materia Medica describes its effects as "benefiting intelligence and dispelling shock, lightning the body and extending life". Dendrobium nobile Lindl. is a precious variety of Dendrobium. Our previous data showed Dendrobium nobile Lindl. alkaloid (DNLA) has significant neuroprotective effects and can improve cognitive dysfunction. However, the specific effects and mechanisms of action of its main active component, DNLA, on cognitive dysfunction caused by Tau hyperphosphorylation, are still unclear. AIM OF THE RESEARCH: This study aimed to determine the effects of DNLA on phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase 3ß (GSK-3ß) pathway, thus to explore the mechanisms of DNLA to inhibit Tau hyperphosphorylation. MATERIALS AND METHODS: We used wortmannin (WM) and GF-109203X (GFX)-induced hyperphosphorylation of Tau in N2a cells and rats to detect the protective mechanism of DNLA in vivo and in vitro. In vitro, the effect of modeling method on Tau hyperphosphorylation was screened and verified by Western Blotting (WB), and the regulation of Tau hyperphosphorylation and PI3K/Akt/GSK-3ß pathway by different concentrations of DNLA was detected by WB. In vivo, MWM was used to detect the effect of DNLA on model rats, and then Nissl staining was used to detect the loss of neurons. Finally, WB was used to detect the regulation of Tau hyperphosphorylation and PI3K/Akt/GSK-3ß pathway by different concentrations of DNLA. RESULTS: DNLA could rescue the abnormal PI3K/Akt/GSK-3ß pathway and reverse the hyperphosphorylation of Tau induced by WM and GFX in N2a cells. Furthermore, DNLA improved the learning and memory of WM and GFX-induced model rats. Moreover, DNLA regulated PI3K/Akt/GSK-3ß pathway and reduced the p-Tau and neuronal damage in the hippocampus of model rats. CONCLUSION: DNLA may be a promising candidate for reducing hyperphosphorylation of Tau.


Assuntos
Alcaloides , Doença de Alzheimer , Dendrobium , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Alcaloides/farmacologia , Fosforilação , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo
3.
Mol Neurobiol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087172

RESUMO

Mitochondrial dysfunction is critically involved in the degeneration of dopamine (DA) neurons in the substantia nigra, a common pathological feature of Parkinson's disease (PD). Previous studies have demonstrated that the NAD+-dependent acetylase Sirtuin 3 (SIRT3) participates in maintaining mitochondrial function and is downregulated in aging-related neurodegenerative disorders. The exact mechanism of action of SIRT3 on mitochondrial bioenergetics in PD pathogenesis, however, has not been fully described. In this study, we investigated the regulatory role of SIRT3-mediated deacetylation of mitochondrial complex II (succinate dehydrogenase) subunit A (SDHA) and its effect on neuronal cell survival in rotenone (ROT)-induced rat and differentiated MN9D cell models. The results revealed that SIRT3 activity was suppressed in both in vivo and in vitro PD models. Accompanying this downregulation of SIRT3 was the hyperacetylation of SDHA, impaired activity of mitochondrial complex II, and decreased ATP production. It was found that the inhibition of SIRT3 activity was attributed to a reduction in the NAD+/NADH ratio caused by ROT-induced inhibition of mitochondrial complex I. Activation of SIRT3 by icariin and honokiol inhibited SDHA hyperacetylation and increased complex II activity, leading to increased ATP production and protection against ROT-induced neuronal damage. Furthermore, overexpression of SDHA also exerted potent protective benefits in cells treated with ROT. In addition, treatment of MN9D cells with the NAD+ precursor nicotinamide mononucleotide increased SIRT3 activity and complex II activity and promoted the survival of cells exposed to ROT. These findings unravel a regulatory SIRT3-SDHA axis, which may be closely related to PD pathology. Bioenergetic rescue through SIRT3 activation-dependent improvement of mitochondrial complex II activity may provide an effective strategy for protection from neurodegeneration.

4.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687255

RESUMO

Plant-derived phytochemicals have recently drawn interest in the prevention and treatment of diabetes mellitus (DM). The seeds of Moringa oleifera Lam. are widely used in food and herbal medicine for their health-promoting properties against various diseases, including DM, but many of their effective constituents are still unknown. In this study, 6 new phenolic glycosides, moringaside B-G (1-6), together with 10 known phenolic glycosides (7-16) were isolated from M. oleifera seeds. The structures were elucidated by 1D and 2D NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) data analysis. The absolute configurations of compounds 2 and 3 were determined by electronic circular dichroism (ECD) calculations. Compounds 2 and 3 especially are combined with a 1,3-dioxocyclopentane moiety at the rhamnose group, which are rarely reported in phenolic glycoside backbones. A biosynthetic pathway of 2 and 3 was assumed. Moreover, all the isolated compounds were evaluated for their inhibitory activities against α-glucosidase. Compounds 4 and 16 exhibited marked activities with IC50 values of 382.8 ± 1.42 and 301.4 ± 6.22 µM, and the acarbose was the positive control with an IC50 value of 324.1 ± 4.99 µM. Compound 16 revealed better activity than acarbose.


Assuntos
Glicosídeos , Moringa oleifera , Glicosídeos/farmacologia , alfa-Glucosidases , Acarbose , Sementes , Fenóis/farmacologia
5.
Drug Dev Res ; 84(2): 262-274, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658700

RESUMO

Dendrobium nobile Lindl. is registered in the Chinese Pharmacopoeia as a traditional medicine. Phytochemical investigation of the ethanol extract of D. nobile Lindl. stems yielded three alkaloid compounds, including two new compounds dendroxine B (2) and denrine B (3) as well as one known compound dendrobine (1). Here, we identified the structure of these compounds using spectroscopic analyses and compared them with those described in previous studies. Compounds 1-3 were found to show protective effect against amyloid-ß 1-42 (Aß1-42 )-induced neurotoxicity in rat pheochromocytoma (PC12) cells, among which dendrobine exhibited the most significant neuroprotective effect. Hoechst 33342/propidium iodide staining indicated that dendrobine ameliorated Aß1-42 -induced apoptosis. Moreover, quantitative real-time polymerase chain reaction and western blot analysis analysis demonstrated that dendrobine suppressed the activation of cyclin-dependent kinase 5 (CDK5), upregulated Bcl-2 expression, and downregulated Bax, cyto-c, and caspase-3 expression. Molecular docking analysis and surface plasmon resonance assay suggested that dendrobine directly bound to CDK5 protein with a KD value of 2.05 × 10-4 M. In summary, alkaloids are the neuroprotective constituents of D. nobile Lindl., and dendrobine protected PC12 cells against Aß1-42 -induced apoptosis by inhibiting CDK5 activation.


Assuntos
Alcaloides , Dendrobium , Animais , Ratos , Dendrobium/química , Quinase 5 Dependente de Ciclina/farmacologia , Células PC12 , Simulação de Acoplamento Molecular , Alcaloides/farmacologia , Apoptose
6.
Biomed Pharmacother ; 157: 114043, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462312

RESUMO

Dendrobium is a traditional medicinal plant, which has a variety of clinical applications in China. It has been reported that Dendrobium contains various bioactive components, mainly including polysaccharides and alkaloids. Previous studies have shown that Dendrobium has pharmacological activities including antiviral, anti-inflammatory, and antioxidant effects, as well as immune regulation. Particularly, the anti-aging functions and neuroprotective effects of Dendrobium have been well characterized in a wide array of cell and animal models. In recent years, the effect of Dendrobium on the liver has emerged as a new direction to explore its therapeutic benefits and has received more and more attention. This review is focused on the beneficial effects of Dendrobium on liver toxicity and various liver disorders, which presumably are attributed to a consequence of an array of modes of action due to its multiple bioactive components, and largely lack mechanistic and pharmacokinetic characterization. A particular emphasis is placed on the potential action mechanisms related to Dendrobium's liver protection. Research perspectives in regard to the potential therapeutic application for Dendrobium are also discussed in this review.


Assuntos
Alcaloides , Dendrobium , Plantas Medicinais , Animais , Polissacarídeos/farmacologia , Fígado
7.
Am J Chin Med ; 50(5): 1387-1400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35726141

RESUMO

Colitis is an important risk factor for the development of colorectal cancer (CRC). The inhibitory effect and the underlying mechanism of neferine on colitis-associated colorectal cancer (CA-CRC) were investigated using an azoxymethane (AOM)/dextran sulfate sodium (DSS) triggered mice model. Compared with the CA-CRC model, oral treatment of neferine (2.5 and 5.0 mg/kg) significantly inhibited the DAI scores, decreased the tumor number, and reduced the tumor size. Neferine decreased inflammatory cell infiltration and epithelial hyperplasia in colon tissues. The levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text], interleukin-1beta (IL-1[Formula: see text], and interleukin 6 (IL-6) in colon tissues were decreased by neferine. Furthermore, neferine significantly decreased protein expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), p-p65, and p-STAT3 in both tumor and non-tumor tissues. In addition, neferine inhibited LPS and IL-6-induced phosphorylation of both NF-[Formula: see text]B p65 and STAT3. Molecular docking demonstrated the interactions of neferine with both NF-[Formula: see text]B p65 and STAT3. In conclusion, these results suggested that neferine inhibited CA-CRC carcinogenesis possibly by regulating NF-[Formula: see text]B and STAT3. Neferine might be a lead compound for the chemoprevention of CA-CRC.


Assuntos
Neoplasias Associadas a Colite , Colite , Animais , Benzilisoquinolinas , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Interleucina-6/metabolismo , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
Phytother Res ; 36(7): 2940-2951, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35537702

RESUMO

Angiogenesis plays a pivotal role in the recovery of neurological function after ischemia stroke. Herein, we investigated the effect of trilobatin (TLB) on angiogenesis after cerebral ischemia-reperfusion injury (CIRI). The effect of TLB on angiogenesis after CIRI were investigated in mouse brain microvascular endothelium bEnd.3 cells and middle cerebral artery occlusion (MCAO)-induced CIRI rat model. The cell proliferation and angiogenesis were observed using immunofluorescence staining. The cell cycle, expressions of cell cycle-related proteins and SIRT 1-7 were determined by flow cytometry and western blot, respectively. The binding affinity of TLB with SIRT7 was predicted by molecular docking. The results showed that TLB concentration-dependently promoted bEnd.3 cell proportion in the S-phase. TLB significantly increased the protein expressions of SIRT6, SIRT7, and VEGFA, but not affected SIRT1-SIRT5 protein expressions. Moreover, TLB not only dramatically alleviated neurological impairment after CIRI, but also enhanced post-stroke neovascularization and newly formed functional vessels in cerebral ischemic penumbra. Furthermore, TLB up-regulated the protein expressions of CDK4, cyclin D1, VEGFA and its receptor VEGFR-2. Intriguingly, TLB not only directly bound to SIRT7, but also increased SIRT7 expression at day 28. Our findings reveal that TLB promotes cerebral microvascular endothelial cells proliferation, and facilitates angiogenesis after CIRI via mediating SIRT7/VEGFA signaling pathway in rats. Therefore, TLB might be a novel restorative agent to rescue ischemia stroke.


Assuntos
Flavonoides , Polifenóis , Traumatismo por Reperfusão , Sirtuínas , Animais , Células Endoteliais/metabolismo , Flavonoides/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Neovascularização Patológica , Polifenóis/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais , Sirtuínas/metabolismo , Fator A de Crescimento do Endotélio Vascular
9.
Brain Res ; 1789: 147950, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618015

RESUMO

Bombesin (BN) is an itch-specific mediator that causes intense itch-scratching activity in mammals. Although most examinations of BN-induced itch processing have focused on the spinal cord, the involvement of central nervous system mechanisms remains unclear. Here, we investigated how relationships among hypothalamic regions regulate BN-mediated itch-scratch processes. We found that intracerebroventricular (i.c.v.) administration of BN (0.04-4 µg) elicited intense itch scratching in mice, whereas BN (0.4-400 µg) administered via intravenous tail injection failed to evoke a scratching response. Additionally, nalfurafine had no significant effects on BN-induced scratching behavior, indicating that central modulation of BN is distinct from histamine-mediated histaminergic itch and chloroquine-mediated non-histaminergic itch signaling pathways. We labeled BN with a fluorescent tag, 7-nitrobenz-2-oxa-1 (NBD), and traced its fluorescence in the hypothalamus for 30 min following i.c.v. NBD-BN administration. Accordingly, we confirmed that i.c.v. administration of BN enhanced c-Fos expression in the dorsal medial nucleus of the hypothalamus, where neuromedin B receptors and gastrin-releasing peptide receptors are highly expressed. Interestingly, in situ injection of BN into the hypothalamus immediately and robustly induced itch-scratching behavior. Moreover, gene transcripts and western blot assay revealed that BN receptor-dependent PKA/CREB signaling was upregulated in the hypothalamus after i.c.v. administration of BN. Consistently, pretreatment with a PKA inhibitor, Rp-cAMP, significantly reduced BN-induced scratching behavior. Our results indicate that the dorsal medial nucleus of the hypothalamus may be a key nucleus in mediating BN-mediated itch and hypothalamic PKA/CREB signaling is involved in regulating BN-mediated itch.


Assuntos
Bombesina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Hipotálamo , Animais , Bombesina/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos , Prurido/induzido quimicamente , Prurido/metabolismo , Receptores da Bombesina/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Front Pharmacol ; 13: 846541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586062

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder recognized as a global public health priority. Although available treatments temporarily relieve the symptoms, they could not prevent the progression of cognitive decline. Natural compounds have been rich sources for drug discovery. Dendrobium nobile Lindl. alkaloid (DNLA) is the main active compound in Dendrobium nobile Lindl, a traditional Chinese herbal medicine. Recent studies indicated that DNLA produced neuroprotection. However, the mechanisms underlying DNLA-generated neuroprotection remain unknown. To investigate neuroprotection and the underlying mechanisms of DNLA, mouse hippocampus injection of lipopolysaccharide (LPS)-induced neuronal damage was performed. DNLA protected hippocampus neurons and working memory disorder against LPS-induced neurotoxicity. In addition, DNLA suppressed cell undergoing membrane lysis and cell swelling and inhibited the essential mediator of pyroptosis GSDMD-N expressions. Furthermore, DNLA-mediated neuroprotection was dependent on the inhibition of NLRP3 inflammasome activation, as evidenced by the fact that DNLA reduced pro-inflammatory factor (IL-18 and IL-1ß) production and inhibited the expression of related proteins. DNLA-exerted neuroprotection against LPS-induced neuronal damage, and cognitive impairment was not observed in NLRP3 knockout mice. Together, this study suggested that DNLA attenuated NLRP3-mediated pyroptosis to generate neuroprotection against LPS-induced neuronal damage and cognitive impairment.

11.
Phytochem Anal ; 33(4): 619-634, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35238089

RESUMO

INTRODUCTION: Alkaloids and glycosides are the active ingredients of the herb Dendrobium nobile, which is used in traditional Chinese medicine. The pharmacological effects of alkaloids include neuroprotective effects and regulatory effects on glucose and lipid metabolism, while glycosides improve the immune system. The pharmacological activities of the above chemical components are significantly different. In practice, the stems of 3-year-old D. nobile are usually used as the main source of Dendrobii Caulis. However, it has not been reported whether this harvesting time is appropriate. OBJECTIVE: The aim of this study was to compare the chemical characteristics of D. nobile in different growth years (1-3 years). METHODS: In this study, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-Q/TOF-MS) was employed to analyze the constituents of D. nobile. The relative abundance of each constituent was analyzed with multivariate statistical analyses to screen the characteristic constituents that contributed to the characterization and classification of D. nobile. Dendrobine, a component of D. nobile that is used for quality control according to the Chinese Pharmacopoeia, was assayed by gas chromatography. RESULTS: As a result, 34 characteristic constituents (VIP > 2) were identified or tentatively identified as alkaloids and glycosides based on MS/MS data. Moreover, the content of alkaloids decreased over time, whereas the content of glycosides showed the opposite trend. The absolute quantification of dendrobine was consistent with the metabolomics results. CONCLUSION: Our findings provide valuable information to optimize the harvest period and a reference for the clinical application of D. nobile.


Assuntos
Alcaloides , Dendrobium , Medicamentos de Ervas Chinesas , Alcaloides/análise , Cromatografia Líquida de Alta Pressão/métodos , Dendrobium/química , Medicamentos de Ervas Chinesas/química , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeos , Espectrometria de Massas em Tandem/métodos
12.
Phytother Res ; 35(10): 5861-5870, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435401

RESUMO

The incidence of ulcerative colitis (UC), one of the two types of inflammatory bowel disease, is increasing in many countries. Various natural products have been demonstrated with therapeutic potentials for UC. Herein, the therapeutic effects and mechanisms of isobavachalcone (IBC), a natural chalcone, were evaluated in dextran sulfate sodium (DSS)-induced colitis mice and lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The results demonstrated that IBC treatment significantly improved the clinical symptoms, assessed by the disease activity index (DAI) scores and the histological changes of the colon. The levels of myeloperoxidase (MPO), TNF-α, IL-6, IL-1ß, and prostaglandin E2 (PGE2) in colon tissues were suppressed by IBC. The upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and NF-κB p65 in colon tissues were reversed by IBC as well. Furthermore, IBC significantly inhibited LPS-triggered secretion of TNF-α, IL-6, and nitrite, and nuclear translocation of NF-κB p65, in RAW264.7 cells. The luciferase reporter assay indicated that IBC significantly inhibited LPS-triggered transcription of toll-like receptor 4 (TLR4). Molecular docking results showed that the binding pocket of IBC was adjacent to Ser276 of p65-p50 heterodimer and IBC could form H-bond with Thr191. Collectively, these results demonstrated that IBC ameliorated colitis in mice possibly through inhibition of NF-κB p65.


Assuntos
Chalconas , Colite Ulcerativa , Colite , Animais , Chalconas/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Citocinas , Sulfato de Dextrana , Flavonoides/farmacologia , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Transdução de Sinais
13.
Biochem Biophys Rep ; 26: 100877, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33889759

RESUMO

Modern pharmacological studies have demonstrated that Dendrobium nobile Lindl. Alkaloids (DNLA), the main active ingredients of Dendrobium nobile, is valuable as an anti-aging and neuroprotective herbal medicine. The present study was designed to determine whether DNLA confers protective function over neurotoxicant manganese (Mn)-induced cytotoxicity and the mechanism involved. Our results showed that pretreatment of PC12 cells with DNLA alleviated cell toxicity induced by Mn and improved mitochondrial respiratory capacity and oxidative status. Mn treatment increased apoptotic cell death along with a marked increase in the protein expression of Bax and a decrease in the expression of Bcl-2 protein, all of which were noticeably reversed by DNLA. Furthermore, DNLA significantly abolished the decrease in protein levels of both PINK1 and Parkin, and mitigated the increased expression of autophagy marker LC3-II and accumulation of p62 caused by Mn. These results demonstrate that DNLA inhibits Mn induced cytotoxicity, which may be mediated through modulating PINK1/Parkin-mediated autophagic flux and improving mitochondrial function.

14.
Artigo em Inglês | MEDLINE | ID: mdl-33510809

RESUMO

Cardiac hypertrophy is a major pathological process to result in heart failure and sudden death. Rutaecarpine, a pentacyclic indolopyridoquinazolinone alkaloid extracted from Evodia rutaecarpa with multiple pharmacological activities, yet the underlying protective effects and the mechanisms on cardiac hypertrophy remain unclear. This study aimed to evaluate the potential effects of rutaecarpine on pressure overload cardiac hypertrophy. Cardiac hypertrophy in rat was developed by abdominal aortic constriction (AAC) for 4 weeks, which was improved by rutaecarpine supplementation (20 or 40 mg/kg/day, i.g.) for another 4 weeks. The level of angiotensin II was increased; the mRNA expression and the activity of calcineurin in the left ventricular tissue were augmented following cardiac hypertrophy. Rutaecarpine administration decreased angiotensin II content and reduced calcineurin expression and activity. Noteworthily, in angiotensin II-induced cardiomyocytes, rutaecarpine ameliorated the hypertrophic effects in a dose-dependent manner and downregulated the increased mRNA expression and activity of calcineurin. In conclusion, rutaecarpine can improve cardiac hypertrophy in pressure overload rats, which may be related to the inhibition of angiotensin II-calcineurin signal pathway.

15.
Ibrain ; 7(3): 153-170, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37786799

RESUMO

Background: Alzheimer's disease (AD) is the most common type of dementia, which brings tremendous burden to the sufferers and society. However, ideal tactics are unavailable for AD. Our previous study has shown that CZ2HF, a Chinese herb preparation, mitigates cognitive impairment in AD rats; whereas, its detailed mechanism has not been elucidated. Methods: Public databases were applied to collect and identify the chemical ingredients of eight herbs in CZ2HF. Criteria of absorption, distribution, metabolism, and excretion was used to screen oral bio-availability and drug-likeness. STITCH database and Therapeutic Target Database were applied to decipher the relationship between compounds and genes related to AD. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology term analyses were used to identify the involved signaling pathways. Cytoscape was adopted to establish the networks The molecular docking was used to validate the interactions between the candidate compounds and their potential targets. Results: 914 compounds were identified in eight herbal medicines of CZ2HF. Among them, 9 compounds and 28 genes were highly involved in the pathologic process of AD. Furthermore, the mechanism of CZ2HF to AD was based on its anti-inflammatory effects mainly through lipopolysaccharide-mediated signaling pathway and TNF signaling pathway. Core genes in this network were TNF, ICAM1, MMP9 and IL-10. Conclusion: This study predicts the active compounds in CZ2HF and uncovers their protein targets using holistic network pharmacology methods. It will provide a insight into the underlying mechanism of CZ2HF to AD from a multi-scale perspective.

16.
J Alzheimers Dis ; 76(2): 657-669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32538851

RESUMO

BACKGROUND: Dendrobium nobile is a well-known traditional Chinese herbal medicine used for age-related diseases. Dendrobium nobile Lindl. alkaloid (DNLA) is the active ingredient to improve learning and memory deficits in laboratory animals. OBJECTIVE: The aim of the present study was to examine the anti-aging effects of long-term administration of DNLA and metformin during the aging process in senescence-accelerated mouse-prone 8 (SAMP8) mice. METHODS: SAMP8 mice were orally given DNLA (20 and 40 mg/kg) or metformin (80 mg/kg) starting at 6 months of age until 12 months of age. Age-matched SAMR1 mice were used as controls. DNLA and metformin treatments ameliorated behavioral deficits of 12-month-old SAMP8 mice, as determined by Rotarod, Y-maze, and Open-field tests. RESULTS: DNLA and metformin treatments prevented brain atrophy and improved morphological changes in the hippocampus and cortex, as evidenced by Nissl and H&E staining for neuron damage and loss, and by SA-ß-gal staining for aging cells. DNLA and metformin treatments decreased amyloid-ß1-42, AßPP, PS1, and BACE1, while increasing IDE and neprilysin for Aß clearance. Furthermore, DNLA and metformin enhanced autophagy activity by increasing LC3-II, Beclin1, and Klotho, and by decreasing p62 in the hippocampus and cortex. CONCLUSION: The beneficial effects of DNLA were comparable to metformin in protecting against aging-related cognitive deficits, neuron aging, damage, and loss in SAMP8 mice. The mechanisms could be attributed to increased Aß clearance, activation of autophagy activity, and upregulation of Klotho.


Assuntos
Envelhecimento/metabolismo , Alcaloides/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Autofagia/fisiologia , Disfunção Cognitiva/metabolismo , Dendrobium , Agregados Proteicos/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Autofagia/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Agregados Proteicos/efeitos dos fármacos
17.
Brain Res ; 1741: 146871, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32380088

RESUMO

The senescence-accelerated mouse prone 8 (SAMP8) mice have many pathological features of Alzheimer's disease (AD) with aging. We previously reported that Dendrobium nobile Lindl alkaloid (DNLA) effectively improved cognitive deficits in multiple Alzheimer's disease (AD) models. This study further used SAMP8 mice to study the anti-aging effects of DNLA, focusing on endoplasmic reticulum (ER) stress. DNLA and metformin were orally administered to SAMP8 mice starting at 4-month of age for 6 months. Behavioral tests were performed in 10-month-old SAMP8 mice and age-matched SAMR1 control mice. At the end of experiment, neuron damage was evaluated by histology and transmission electron microscopy. ER stress-related proteins were analyzed with Western-blot. DNLA improved learning and memory impairments, reduced the loss of neurons and Nissl bodies in the hippocampus and cortex. DNLA ameliorated ER dilation and swelling in the hippocampal neurons. DNLA down-regulated the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway, decreased calpain 1, GSK-3ß and Cdk5 activities and the Tau hyper-phosphorylation. The effects of DNLA were comparable to metformin. In summary, DNLA was effective in improving cognitive deficits in aged SAMP8 mice, possibly via suppression of ER stress-related PERK signaling pathway, sequential inhibition of calpain 1, GSK-3ß and Cdk5 activities, and eventually reducing the hyper-phosphorylation of Tau.


Assuntos
Envelhecimento/efeitos dos fármacos , Alcaloides/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Dendrobium , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metformina/administração & dosagem , Envelhecimento/genética , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Disfunção Cognitiva/genética , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico
18.
Zhongguo Zhong Yao Za Zhi ; 45(1): 14-19, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-32237406

RESUMO

Anxiety disorders are a common mental illness that seriously endangered physical and mental health of human beings. The etiology of anxiety disorders is closely related to the abnormality of monoamines neurotransmitters, amino acids neurotransmitters and neuropeptides. The long-term use of anti-anxiety chemical drugs has some adverse effects, such as constipation, muscle relaxation, lethargy, tolerance and withdrawal symptoms. However, traditional Chinese medicines have advantages of multi-component, multi-target coordination, with less adverse reactions. Therefore, it is a promising prospect to develop novel anti-anxiety drugs from traditional Chinese medicines and formulas. This article reviewed some traditional Chinese medicines and formulas that can relieve anxiety symptoms. These include traditional Chinese medicines(Panax ginseng, Lycium ruthenium, Morus alba, Bupleurum plus dragon bone oyster soup, Chailong Jieyu Pills, and Naogongtai Formulas) with the effect on monoamine neurotransmitters, such as serotonin, dopamine, and norepinephrine; traditional Chinese medicines(Rehmannia glutinosa, Ziziphus jujuba Mill. var. spinosa, Jielv Anshen Decoction, Baixiangdan Capsules, Antianxietic Compound Prescription Capsules) with the effect on amino acid neurotransmitters, such as glutamic acid, γ-aminobutyrc acid; and traditional Chinese medicines(P. ginseng, Xiaoyao San, Shuyu Ningxin Decoction)with the effect on neuropeptide Y pathway, with the aim to provide theoretical basis for the further development of some novel and more effective anti-anxiety therapeutics from traditional Chinese medicine and formulas.


Assuntos
Ansiolíticos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Neurotransmissores , Humanos , Medicina Tradicional Chinesa , Norepinefrina , Serotonina
19.
Adv Pharmacol ; 87: 179-203, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089233

RESUMO

Icariin (ICA) is a principal active component from traditional Chinese medicine Epimedium grandiflorum. To explain its traditional medical usages by modern science, a variety of pharmacological effects have been studied for ICA. In this review, we summarized the pharmacokinetics of ICA as well as its pharmacological mechanisms in neurodegenerative disease, cardiovascular disease, anti-osteoporosis, anti-inflammation, anti-oxidative stress, anti-depression and anti-tumors.


Assuntos
Flavonoides/farmacologia , Animais , Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Flavonoides/química , Flavonoides/farmacocinética , Flavonoides/uso terapêutico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos
20.
Behav Neurol ; 2019: 9546761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781295

RESUMO

Cu-Zhi-Yi-Hao (CZYH), an empirical formula of traditional Chinese medicine (TCM), has been used for amnesia treatment in clinical practice. However, its underlying pharmacological mechanism has not been fully illuminated. The current study was designed to investigate the neuroprotective effect of CZYH on a ß-amyloid 25-35- (Aß 25-35-) induced learning and memory deficit rat model. CZYH (200, 400, or 800 mg/kg), donepezil (1.0 mg/kg), or distilled water was given to Aß 25-35-stimulated animals for 17 days consecutively. The Morris water maze test revealed that CZYH (400 or 800 mg/kg) administration improved the Aß 25-35-induced cognitive impairments in rats, and Nissl staining demonstrated that CZYH mitigated the Aß-caused neuron loss. In addition, CZYH treatment markedly inhibited the activation of microglia as evidenced by a decreased level of IBA-1 and increased YM-1/2 protein expression. The protein expression levels of TNF-α, IL-1ß, and COX-2 were also repressed by CZYH. Besides, CZYH treatment alleviated Aß-induced IκB-α degradation and NF-κB p65 phosphorylation, as well as reduced the JNK phosphorylation level. In conclusion, the present study suggests that CZYH could improve learning and memory abilities and relieve neuron loss in Aß 25-35-induced rats, at least partly through inhibition of the neuroinflammatory response via inhibiting the JNK-dependent NF-κB activation, indicating that CZYH might be a promising formula for the treatment of AD.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Alpinia , Peptídeos beta-Amiloides/metabolismo , Animais , China , Disfunção Cognitiva/metabolismo , Ciclo-Oxigenase 2/metabolismo , Hipocampo/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Medicina Tradicional Chinesa/métodos , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA