Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 38(6): 1239-1250, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36880395

RESUMO

Microcystins (MCs) is a class of cyclic heptapeptide compounds with biological activity. There is no effective treatment for liver injury caused by MCs. Hawthorn is a medicinal and edible plant traditional Chinese medicine with hypolipidemic, reducing inflammation and oxidative stress in the liver. This study discussed the protective effect of hawthorn fruit extract (HFE) on liver damage caused by MC-LR and the underlying molecular mechanism. After MC-LR exposure, pathological changes were observed and hepatic activity of ALT, AST and ALP were increased obviously, but they were remarkably restored with HFE administration. In addition, MC-LR could significantly reduce SOD activity and increase MDA content. Importantly, MC-LR treatment resulted in mitochondrial membrane potential decreased, and Cytochrome C release, eventually leading to cell apoptosis rate increase. HFE pretreatment could significantly alleviate the above abnormal phenomena. To examine the mechanism of protection, the expression of critical molecules in the mitochondrial apoptosis pathway was examined. The levels of Bcl-2 was inhibited, and the levels of Bax, Caspase-9, Cleaved Caspase-9, and Cleaved caspase-3 were upregulated after MC-LR treatment. HFE reduced MC-LR-induced apoptosis via reversing the expression of key proteins and genes in the mitochondrial apoptotic pathway. Hence, HFE could alleviate MC-LR induced hepatotoxicity by reducing oxidative stress and apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Crataegus , Caspase 9 , Frutas , Estresse Oxidativo , Apoptose , Microcistinas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
2.
Arch Biochem Biophys ; 716: 109111, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942193

RESUMO

Supplementation with antioxidant carotenoids is a therapeutic strategy to protect against age-related macular degeneration (AMD); however, the transport mechanism of carotenoids from the liver to the retina is still not fully understood. Here, we investigate if HDL serves as the primary transporter for the macular carotenoids. ApoA-I, the key apolipoprotein of HDL, was genetically deleted from BCO2 knockout (Bco2-/-) mice, a macular pigment mouse model capable of accumulating carotenoids in the retina. We then conducted a feeding experiment with a mixed carotenoid chow (lutein:zeaxanthin:ß-carotene = 1:1:1) for one month. HPLC data demonstrated that the total carotenoids were increased in the livers but decreased in the serum, retinal pigment epithelium (RPE)/choroids, and retinas of ApoA-I-/-/Bco2-/- mice compared to Bco2-/- mice. In detail, ApoA-I deficiency caused a significant increase of ß-carotene but not lutein and zeaxanthin in the liver, decreased all three carotenoids in the serum, blocked the majority of zeaxanthin and ß-carotene transport to the RPE/choroid, and dramatically reduced ß-carotene and zeaxanthin but not lutein in the retina. Furthermore, surface plasmon resonance spectroscopy (SPR) data showed that the binding affinity between ApoA-I and ß-carotene â‰« zeaxanthin > lutein. Our results show that carotenoids are transported from the liver to the eye mainly by HDL, and ApoA-I may be involved in the selective delivery of macular carotenoids to the RPE.


Assuntos
Apolipoproteína A-I/genética , Carotenoides/metabolismo , Dioxigenases/genética , Lipoproteínas HDL2/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Carotenoides/sangue , Modelos Animais de Doenças , Humanos , Fígado , Luteína/metabolismo , Degeneração Macular/metabolismo , Camundongos , Camundongos Knockout , Retina , Zeaxantinas/metabolismo , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA