Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(48): 19045-19053, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982559

RESUMO

Pyrrolizidine alkaloids (PAs) have been detected in tea and can threaten human health. However, the specific source of PAs in tea is still unclear. Here, 88 dried tea products collected from six major tea-producing areas in Anhui Province, China, were analyzed. The detection frequency was 76%. The content of total PAs in dried tea was between 1.1 and 90.5 µg/kg, which was all below the MRL recommended by the European Union (150 µg/kg). In the Shexian tea garden, PAs in the weeds and weed rhizospheric soil around tea plants and the fresh tea leaves were analyzed. Intermedine (Im), intermedine-N-oxide (ImNO), and jacobine-N-oxide (JbNO) were transferred through the weed-to-soil-to-tea route into the fresh tea leaves; only Im and ImNO were detected in dried tea samples. Potential risk of the total PAs in the tea infusion was assessed according to the margin of exposure method, and it might be a low concern for public health.


Assuntos
Camellia sinensis , Alcaloides de Pirrolizidina , Humanos , Alcaloides de Pirrolizidina/análise , Plantas Daninhas , Chá , Medição de Risco , Óxidos
2.
Food Addit Contam Part B Surveill ; 16(1): 50-57, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36396606

RESUMO

Pyrrolizidine alkaloids (PAs) can be transferred between plants via soil. Indicators of PAs in tea products are useful for tea garden management. In the present work a total of 37 weed species, 37 weed rhizospheric soils and 24 fresh tea leaf samples were collected from tea gardens, in which PAs were detected in 35 weeds species, 21 soil samples and 10 fresh tea leaves samples. In Shexian tea garden, 12.9 µg/kg of intermedine (Im) in one bud plus three leaves, 1.40 and 14.6 µg/kg of intermedine-N-oxide (ImNO) in one bud plus two leaves and one bud plus three leaves were detected, which were transferred from the PA-producing weeds via soil. However, no PAs were detected in fresh tea leaves collected from Langxi tea garden. The results indicated that synthesis of PAs in weeds and their transfer through the weed-soil-fresh tea leaf route varied with soil environments in different tea gardens.


Assuntos
Contaminação de Alimentos , Plantas Daninhas , Contaminação de Alimentos/análise , Folhas de Planta , Chá , Solo
3.
Sci Total Environ ; 806(Pt 4): 150863, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626633

RESUMO

Enantioselective metabolism of chiral pesticide in plants is very important. In vitro system has become an effective means to study the metabolism of pesticides in plants, but the study on the metabolism of chiral pesticides has not been reported. This work compared the enantiomer metabolic behavior of acephate and its metabolite methamidophos between tea cell suspensions and excised tea stem with leaves. (±)-Acephate could be absorbed and transferred well to top leaves by the cut end of excised stem after 24 h. (±)-Methamidophos was derived from the metabolism of (±)-acephate in tea plants at 3-5% in leaves and 2-3% in stems at 216 h. The content of (+)-methamidophos was 1.5 times higher than that of (-)-methamidophos in excised leaves. Though both (±)-acephate and (±)-methamidophos could be metabolized well by cell suspension, (±)-acephate and (±)-methamidophos was non-enantioselectively metabolized in cell suspension. It was shown that using the excised tea stem with leaves for chiral pesticide metabolism studies was much closer to intact plant than cell suspensions. This result also established an effective and easily available in vitro metabolic model for the study of enantioselective metabolism of chiral contaminants from environment.


Assuntos
Camellia sinensis , Inseticidas , Inseticidas/análise , Compostos Organotiofosforados , Fosforamidas , Folhas de Planta/química , Estereoisomerismo , Suspensões , Chá
4.
J Agric Food Chem ; 62(50): 12090-5, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25423043

RESUMO

Chlorothalonil (CTL) is a broad-spectrum fungicide. Photodegradation is a main degradation pathway of CTL in water. Because of the high aquatic toxicity of CTL and its metabolite 4-hydroxy CTL (CTL-OH), it is significant to develop an effective method to degrade CTL but without formation of CTL-OH. Epigallocatechin gallate (EGCG) is an abundant tea byproduct and has more than 100-fold reducing power than vitamin C. The present study reports photosensitization effects of EGCG on CTL photodegradation in water under sunlight and artificial lights. The results indicated that EGCG significantly photosensitizes CTL photodegradation. Under high-pressure mercury light illumination, CTL underwent primarily reductive dechlorination. CTL-OH, a main CTL photolytic product, was not detected when EGCG was added in the water. We concluded that EGCG not only significantly enhances CTL photodegradation rate but also alters the photodegradation pathways, avoiding the production of the highly toxic CTL-OH. The results indicated high potential of using EGCG to minimize CTL aquatic toxicity and pollution.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Recuperação e Remediação Ambiental/métodos , Fungicidas Industriais/química , Nitrilas/química , Fotólise/efeitos da radiação , Extratos Vegetais/química , Poluentes Químicos da Água/química , Catequina/química , Halogenação , Estrutura Molecular , Oxirredução/efeitos da radiação , Sementes/química , Luz Solar , Resíduos/análise , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA