Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171475, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453063

RESUMO

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Assuntos
Carpas , Suplementos Nutricionais , Imidazóis , Animais , Suplementos Nutricionais/análise , Dieta , NF-kappa B , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Imunidade Inata , Azóis/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/induzido quimicamente , Inflamação/veterinária , Estresse Oxidativo , Apoptose , Carpas/metabolismo
2.
Fish Shellfish Immunol ; 97: 283-293, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863904

RESUMO

Selenium is an essential element but toxic at high levels in animals. The effects of Se on growth performance and the immune system in Nile tilapia remain inconclusive. In this study, Nile tilapia Oreochromis niloticus was fed on selenium yeast (Se(Y))- and selenite (Se(IV))-enriched feed at 0, 3, 6, and 12 µg/g (dry wt) for 45 and 90 d. The growth, bioaccumulation, biochemical markers related to antioxidant, immunological, nervous and digestive systems were evaluated in various fish tissues (liver, intestine, kidney, muscle, brain, spleen, gills). The results showed that the accumulation of Se(Y) was 1.3-2 folds of Se(IV) in most tissues. The growth of tilapia was enhanced by both Se(Y) and Se(IV) at 3 µg/g after 90 d, with Se(Y) better than Se(IV) in tilapia feed. After 45 d, the levels of lipid peroxidation, the activity of the antioxidant enzymes, and the transcriptional levels of the immune related genes (IL-1ß, IFN-γ and TNF-α) and stress proteins (HSP70 and MT) were enhanced in all treatments, except that of MT in the 12 µg/g Se(Y) group. In addition, both Se species inhibited the activity of acetylcholinesterase (AChE) in the brain and one digestive enzyme α-glucosidase (α-Glu) in the intestine at 12 µg/g. However, after 90 d, the effects on most biochemical markers were less pronounced, implying a possible acclimation after prolonged duration. The results demonstrate Se is beneficial to O. niloticus at low levels and toxic at elevated levels. The immunostimulation by Se might be greatly weakened after long term feeding Se-enriched feed. This study helps to better understand the effects of Se on the antioxidant and immune systems and to establish the optimal Se levels in the feed and duration for O. niloticus.


Assuntos
Antioxidantes/metabolismo , Bioacumulação , Ciclídeos/imunologia , Imunidade Inata/efeitos dos fármacos , Ácido Selenioso/metabolismo , Selênio/metabolismo , Fermento Seco/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Ácido Selenioso/administração & dosagem , Selênio/administração & dosagem , Fatores de Tempo , Fermento Seco/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA