Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118918, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37666134

RESUMO

Selenium (Se), as an essential microelement, can be supplied through Se-biofortified food from Se-rich soils and associated farming practices for human health, while it can also cause eco-risks if overapplied. In this study, a multi-scale spatiotemporal meta-analysis was conducted to guide sustainable Se-rich farming in China by combining a long-term survey with a reviewed database. The weighted mean concentration, spatial distribution of soil Se, nationwide topsoil Se variation from cropping impacts and its bioavailability-based ecological risks were assessed and quantified. The results showed that the weighted mean content (0.3 mg kg-1) of China was slightly higher than that of previous nationwide topsoil Se surveys, as more Se-rich areas were found in recent high-density sampling surveys. Cropping has overall reduced Se content by 9.5% from farmland across China and deprived more with the increase in farming rotation driven by geo-climatic conditions. Long-term cropping removed Se from Se-rich areas but accumulated it in Se-deficient areas. Additionally, the bioavailable Se content of topsoil in China ranged from 0 to 332 µg kg-1, and the bioavailability-based eco-risks indicated that high eco-risks only existed in overfertilized and extremely high-Se soils, such as in Enshi, Ziyang and some coalfield areas. This work provides evidence for the development of sustainable Se-rich farming with proper utilization of soil Se resources, simultaneously protecting the soil eco-environment.


Assuntos
Selênio , Humanos , Fazendas , Agricultura , Solo , China , Medição de Risco
2.
Sci Total Environ ; 807(Pt 2): 150770, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34624283

RESUMO

Se unevenly distributed in soils due to variations of geology and anthropogenic input, which results in different effects on earthworms. The effects of Se were characterized by analyzing the growth and metabolism responses of earthworms after exposure to three different concentrations of Na2SeO3. The results showed that except the possible growth promotion at 5 mg/kg, low and middle-level exposure to Na2SeO3 (0.3-10 mg/kg) did not significantly affect the growth of earthworms. While a significant inhibition effect on growth was observed in the high-level exposure group (30-70 mg/kg). There was an inflection point for Se performing promotion to inhibition effects on earthworm growth. To investigate the metabolic response of earthworms, a novel HPLC-ESI-MS (High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry) method was used to determine sensitive biomarkers. Selenium exposure significantly altered the metabolism of seven essential amino acids, namely tyrosine, leucine, phenylalanine, valine, alanine, glycine, and lysine, and two selenoamino acids, namely selenomethionine and methylselenocysteine. The overall metabolism level of earthworms was not affected at low exposure concentrations, but was affected at medium and high exposure concentrations. The metabolic pathways that integrated the selenocompound metabolism and the tricarboxylic acid cycle from the perspective of energy supply and demand were affected by Na2SeO3 exposure. The derived reactive oxygen species at high exposure concentrations were probably the reason for the growth inhibition effect of Se on earthworms. This study provides biochemical insights into the effects of Na2SeO3 on earthworms and suggests that an Se concentration of about 2.3 mg/kg is appropriate for soil organism health.


Assuntos
Oligoquetos , Selênio , Animais , Selênio/toxicidade
3.
Stem Cell Reports ; 12(6): 1380-1388, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31189096

RESUMO

Human induced pluripotent stem cell (iPSC)-derived developmental lineages are key tools for in vitro mechanistic interrogations, drug discovery, and disease modeling. iPSCs have previously been differentiated to endothelial cells with blood-brain barrier (BBB) properties, as defined by high transendothelial electrical resistance (TEER), low passive permeability, and active transporter functions. Typical protocols use undefined components, which impart unacceptable variability on the differentiation process. We demonstrate that replacement of serum with fully defined components, from common medium supplements to a simple mixture of insulin, transferrin, and selenium, yields BBB endothelium with TEER in the range of 2,000-8,000 Ω × cm2 across multiple iPSC lines, with appropriate marker expression and active transporters. The use of a fully defined medium vastly improves the consistency of differentiation, and co-culture of BBB endothelium with iPSC-derived astrocytes produces a robust in vitro neurovascular model. This defined differentiation scheme should broadly enable the use of human BBB endothelium for diverse applications.


Assuntos
Barreira Hematoencefálica/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Barreira Hematoencefálica/citologia , Meios de Cultura , Células Endoteliais/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA