Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1770-1778, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282951

RESUMO

To investigate the effect of Huazhi Rougan Granules(HZRG) on autophagy in a steatotic hepatocyte model of free fatty acid(FFA)-induced nonalcoholic fatty liver disease(NAFLD) and explore the possible mechanism. FFA solution prepared by mixing palmitic acid(PA) and oleic acid(OA) at the ratio of 1∶2 was used to induce hepatic steatosis in L02 cells after 24 h treatment, and an in vitro NAFLD cell model was established. After termination of incubation, cell counting kit-8(CCK-8) assay was performed to detect the cell viability; Oil red O staining was employed to detect the intracellular lipid accumulation; enzyme-linked immunosorbnent assay(ELISA) was performed to measure the level of triglyceride(TG); to monitor autophagy in L02 cells, transmission electron microscopy(TEM) was used to observe the autophagosomes; LysoBrite Red was used to detect the pH change in lysosome; transfection with mRFP-GFP-LC3 adenovirus was conducted to observe the autophagic flux; Western blot was performed to determine the expression of autophagy marker LC3B-Ⅰ/LC3B-Ⅱ, autophagy substrate p62 and silent information regulator 1(SIRT1)/adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway. NAFLD cell model was successfully induced by FFA at 0.2 mmol·L~(-1) PA and 0.4 mmol·L~(-1) OA. HZRG reduced the TG level(P<0.05, P<0.01) and the lipid accumulation of FFA-induced L02 cells, while elevated the number of autophagosomes and autophagolysosomes to generate autophagic flux. It also affected the functions of lysosomes by regulating their pH. Additionally, HZRG up-regulated the expression of LC3B-Ⅱ/LC3B-Ⅰ, SIRT1, p-AMPK and phospho-protein kinase A(p-PKA)(P<0.05, P<0.01), while down-regulated the expression of p62(P<0.01). Furthermore, 3-methyladenine(3-MA) or chloroquine(CQ) treatment obviously inhibited the above effects of HZRG. HZRG prevented FFA-induced steatosis in L02 cells, and its mechanism might be related to promoting autophagy and regulating SIRT1/AMPK signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Autofagia , Fígado
2.
Sci Rep ; 11(1): 9520, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947942

RESUMO

Inflammatory demyelination and axonal injury of the optic nerve are hallmarks of optic neuritis (ON), which often occurs in multiple sclerosis and is a major cause of visual disturbance in young adults. Although a high dose of corticosteroids can promote visual recovery, it cannot prevent permanent neuronal damage. Novel and effective therapies are thus required. Given the recently defined capacity of matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae flavescens, in immunomodulation and neuroprotection, we tested in this study the effect of matrine on rats with experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. MAT administration, started at disease onset, significantly suppressed optic nerve infiltration and demyelination, with reduced numbers of Iba1+ macrophages/microglia and CD4+ T cells, compared to those from vehicle-treated rats. Increased expression of neurofilaments, an axon marker, reduced numbers of apoptosis in retinal ganglion cells (RGCs). Moreover, MAT treatment promoted Akt phosphorylation and shifted the Bcl-2/Bax ratio back towards an antiapoptotic one, which could be a mechanism for its therapeutic effect in the ON model. Taken as a whole, our results demonstrate that MAT attenuated inflammation, demyelination and axonal loss in the optic nerve, and protected RGCs from inflammation-induced cell death. MAT may therefore have potential as a novel treatment for this disease that may result in blindness.


Assuntos
Alcaloides/farmacologia , Apoptose/efeitos dos fármacos , Neurite Óptica/tratamento farmacológico , Quinolizinas/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/metabolismo , Neurite Óptica/metabolismo , Plantas Medicinais/química , Ratos , Ratos Wistar , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Matrinas
3.
Small ; 14(4)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205852

RESUMO

Mitochondria-mediated apoptosis (MMA) is a preferential option for cancer therapy due to the presence of cell-suicide factors in mitochondria, however, low permeability of mitochondria is a bottleneck for targeting drug delivery. In this paper, glycyrrhetinic acid (GA), a natural product from Glycyrrhiza glabra, is found to be a novel mitochondria targeting ligand, which can improve mitochondrial permeability and enhance the drug uptake of mitochondria. GA-functionalized graphene oxide (GO) is prepared and used as an effective carrier for targeted delivery of doxorubicin into mitochondria. The detailed in vitro and in vivo mechanism study shows that GA-functionalized GO causes a decrease in mitochondrial membrane potential and activates the MMA pathway. The GA-functionalized drug delivery system demonstrates highly improved apoptosis induction ability and anticancer efficacy compared to the non-GA-functionalized nanocarrier delivery system. The GA-functionalized nanocarrier also shows low toxicity, suggesting that it can be a useful tool for drug delivery.


Assuntos
Ácido Glicirretínico/química , Grafite/química , Mitocôndrias/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus
4.
Phytomedicine ; 22(13): 1139-49, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26598912

RESUMO

BACKGROUND: Polyphyllin I (PPI), a bioactive phytochemical isolated from the rhizoma of Paris polyphyllin, exerts preclinical anticancer efficacy in various cancer models. However, the effects of PPI on regulatory human hepatocellular carcinoma (HCC) cell proliferation and its underlying mechanisms remain unknown. PURPOSE: This study investigated the antiproliferation effect of PPI on HCC cells and its underlying mechanisms. METHODS: Cell viability was measured by MTT assay. Cell death, apoptosis and acidic vesicular organelles (AVOs) formation were determined by flow cytometry. Protein levels were analyzed by Western blot analysis. RESULTS: PPI induced apoptosis through the caspase-dependent pathway and activated autophagy through the PI3K/AKT/mTOR pathway. Blockade of autophagy by pharmacological inhibitors or RNA interference enhanced the cytotoxicity and antiproliferation effects of PPI. Moreover, chloroquine (CQ) enhanced the antiproliferation effect of PPI on HCC cells via the caspase-dependent apoptosis pathway by inhibiting protective autophagy. Therefore, the combination therapy of CQ and PPI exhibited synergistic effects on HCC cells compared with CQ or PPI alone. CONCLUSION: The current findings strongly indicate that PPI can induce protective autophagy in HCC cells, thereby providing a novel target in potentiating the anticancer effects of PPI and other chemotherapeutic drugs in liver cancer treatment. Moreover, the combination therapy of CQ and PPI is an effective and promising candidate to be further developed as therapeutic agents in the treatment of liver cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Diosgenina/análogos & derivados , Neoplasias Hepáticas/patologia , Caspases/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Diosgenina/farmacologia , Sinergismo Farmacológico , Humanos , Estrutura Molecular , Saponinas/farmacologia , Transdução de Sinais
5.
Cancer Lett ; 366(1): 19-31, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26118776

RESUMO

In this study, the anti-cancer effect of Icariside II (IS), a natural plant flavonoid, against hepatoblastoma cells and the underlying mechanisms were investigated. The in vitro and in vivo studies show that IS decreased the viability of human hepatoblastoma HepG2 cells in a concentration- and time-dependent manner and inhibited tumor growth in mice transplanted with H22 liver carcinomas. IS impaired mitochondria and lysosomes as evidenced by signs of induced mitochondrial and lysosomal membrane permeabilization, resulting in caspase activation and apoptosis. SQSTM1 up-regulation and autophagic flux measurements demonstrated that IS exposure also impaired autophagosome degradation which resulted in autophagosome accumulation, which plays a pro-survival role as the genetic knockdown of LC3B further sensitized the IS-treated cells. Electron microscopy images showed that autophagosome engulfs IS-impaired mitochondria and lysosomes, thus blocking cytotoxicity induced by further leakage of the hydrolases from lysosomes and pro-apoptosis members from mitochondria. In conclusion, these data suggest that IS plays multiple roles as a promising chemotherapeutic agent that induces cell apoptosis involving both mitochondrial and lysosomal damage.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/farmacologia , Hepatoblastoma/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Hepatoblastoma/patologia , Humanos , Neoplasias Hepáticas/patologia , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/fisiologia
6.
Br J Pharmacol ; 168(6): 1412-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23121335

RESUMO

BACKGROUND AND PURPOSE: Accumulating evidence indicates an important role of oxidative stress in the progression of osteoporosis. Recently, it was demonstrated that hydrogen gas, as a novel antioxidant, could selectively reduce hydroxyl radicals and peroxynitrite anion to exert potent therapeutic antioxidant activity. The aim of the present work was to investigate the effect of hydrogen water (HW) consumption on ovariectomy-induced osteoporosis. EXPERIMENTAL APPROACH: Ovariectomized rats were fed with HW (1.3 ± 0.2 mg·L⁻¹) for 3 months. Then, blood was collected and femur and vertebrae were removed for evaluation of the effect of HW on bone. KEY RESULTS: HW consumption in ovariectomized rats had no significant effect on oestrogen production, but prevented the reduction of bone mass including bone mineral content and bone mineral density in femur and vertebrae, and preserved mechanical strength including ultimate load, stiffness, and energy, and bone structure including trabecular bone volume fraction, trabecular number, and trabecular thickness in femur, and preserved mechanical strength including ultimate load and stiffness, and bone structure including trabecular bone volume fraction and trabecular number in vertebrae. In addition, treatment with HW abated oxidative stress and suppressed IL-6 and TNF-α mRNA expressions in femur of ovariectomized rats; treatment with HW increased femur endothelial NOS activity and enhanced circulating NO level in ovariectomized rats. CONCLUSIONS AND IMPLICATIONS: HW consumption prevents osteopenia in ovariectomized rats possibly through the ablation of oxidative stress induced by oestrogen withdrawal.


Assuntos
Antioxidantes/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Doenças Ósseas Metabólicas/prevenção & controle , Osso e Ossos/química , Hidrogênio/uso terapêutico , Estresse Oxidativo , Animais , Densidade Óssea , Doenças Ósseas Metabólicas/etiologia , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Fenômenos Químicos , Feminino , Regulação da Expressão Gênica , Interleucina-6/antagonistas & inibidores , Interleucina-6/genética , Interleucina-6/metabolismo , Fenômenos Mecânicos , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ovariectomia/efeitos adversos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA