RESUMO
Traditional Chinese medicine (TCM) has been used to treat triple-negative breast cancer (TNBC), a breast cancer subtype with poor prognosis. Clinical studies have verified that the Sanyingfang formula (SYF), a TCM prescription, has obvious effects on inhibiting breast cancer recurrence and metastasis, prolonging patient survival, and reducing clinical symptoms. However, its active ingredients and molecular mechanisms are still unclear. In this study, the active ingredients of each herbal medicine composing SYF and their target proteins are obtained from the Traditional Chinese Medicine Systems Pharmacology database. Breast cancer-related genes are obtained from the GeneCards database. Major targets and pathways related to SYF treatment in breast cancer are identified by analyzing the above data. By conducting molecular docking analysis, we find that the active ingredients quercetin and luteolin bind well to the key targets KDR1, PPARG, SOD1, and VCAM1. In vitro experiments verify that SYF can reduce the proliferation, migration, and invasion ability of TNBC cells. Using a TNBC xenograft mouse model, we show that SYF could delay tumor growth and effectively inhibit the occurrence of breast cancer lung metastasis in vivo. PPARG, SOD1, KDR1, and VCAM1 are all regulated by SYF and may play important roles in SYF-mediated inhibition of TNBC recurrence and metastasis.
Assuntos
Proliferação de Células , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Humanos , Animais , Feminino , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Farmacologia em Rede , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Luteolina/farmacologia , Luteolina/uso terapêutico , Camundongos Endogâmicos BALB C , Quercetina/farmacologia , Quercetina/química , Medicina Tradicional Chinesa , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by high invasion and metastasis rates. Xian-Ling-Lian-Xia formula (XLLX) is a traditional Chinese medicine prescription widely used in China for treating TNBC. Clinical studies have shown that XLLX significantly reduces the recurrence and metastasis rate of TNBC and improves disease-free survival. However, the potential molecular mechanisms of XLLX on TNBC are not clear yet. Here, we investigated the effects of XLLX on TNBC using a mouse model and tumor cell lines. The results showed that XLLX significantly inhibited the proliferation, migration, and invasion abilities of TNBC cell lines MDA-MB-231 and 4T1 in vitro, induced apoptosis, and regulated the expression of proliferation, apoptosis, and EMT marker proteins in tumor cells. In in vivo experiments, XLLX treatment significantly reduced the progression of TNBC tumors and lung metastasis. Transcriptomics reveals that XLLX treatment significantly enriched differentially expressed genes in the peroxisome proliferator-activated receptor gamma (PPARγ) and AMP-dependent protein kinase (AMPK) signaling pathways. The western blot results confirmed that XLLX significantly upregulated the protein expression of PPARγ and p-AMPK in TNBC cells, tumors, and lung tissues. It is noteworthy that GW9662 (a PPARγ inhibitor) and Compound C (an AMPK inhibitor) partially reversed the anti-proliferation and anti-metastasis effects of XLLX in TNBC cells. Therefore, XLLX may effectively inhibit the growth and metastasis of TNBC by activating the PPARγ/AMPK signaling pathway.
Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , PPAR gama/farmacologia , Proliferação de Células , Transdução de Sinais , Linhagem Celular Tumoral , Movimento CelularRESUMO
Doxorubicin (Dox) is a first-line chemotherapeutic agent applied in cancer treatment. Its long-term anticancer efficacy is restricted mainly due to its subsequent cardiotoxicity for patients. Platycodon grandiflorum (PG), an important traditional Chinese herb, has been reported to eliminate phlegm, relieve cough, and reduce inflammatory diseases. Previous clinical studies found that PG has cardioprotective effects for early breast cancer patients who received Dox-based chemotherapy. However, the cellular and molecular mechanisms underlying PG-mediated cardiotoxic rescue remain elusive. This study aimed to explore the protective role and potential molecular mechanisms of PG on Dox-induced cardiac dysfunction in a mouse model of breast cancer. PG significantly alleviated myocardial damage and prevented cardiomyocyte apoptosis induced by Dox. The expression levels of cytochrome C and cleaved caspase-3 significantly decreased, and the levels of Bcl-XL and B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein increased following PG treatment. Furthermore, PG remarkably enhanced the antimetastatic efficacy (versus the Dox group) by regulating the balance of matrix metalloproteinases/tissue inhibitors of metalloproteinases.
Assuntos
Antineoplásicos , Cardiopatias , Neoplasias , Platycodon , Camundongos , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Antineoplásicos/farmacologia , Cardiopatias/induzido quimicamente , Apoptose , Miócitos Cardíacos/metabolismo , Neoplasias/metabolismoRESUMO
BACKGROUND: To assess the benefits and harmful effects of Chinese herbal medicine (CHM) formulations in preventing anthracyclines (ANT)-induced cardiotoxicity. METHOD: The Cochrane Library, Pubmed and EMBASE databases were electronically searched for relevant randomized controlled trials (RCTs) published till December 2021 in English or Chinese-language, in addition to manual searches through the reference lists of the selected papers, and the Chinese Conference Papers Database. Data was extracted by 2 investigators independently. RESULT: Seventeen RCTs reporting 11 different CHMs were included in this meta-analysis. The use of CHM reduced the occurrence of clinical heart failure (RR 0.48, 95% CI 0.39 to 0.60, P < .01) compared to the control group. Data on subclinical heart failure in terms of LVEF values showed that CHM reduced the occurrence of subclinical heart failure (RR 0.47, 95% CI 0.35 to 0.62, P < .01) as well. CONCLUSION: CHM is an effective and safe cardioprotective intervention that can potentially prevent ANT-induced cardiotoxicity. However, due to the insufficient quality of the included trials, our results should be interpreted with cautious.
Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Neoplasias , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/uso terapêutico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/prevenção & controle , Humanos , Neoplasias/tratamento farmacológico , Estudos ProspectivosRESUMO
BACKGROUND: Xian-ling-lian-xia-fang (XLLXF), a Chinese medicine decoction, is widely used in the treatment of triple negative breast cancer (TNBC). However, the underlying mechanism of XLLXF in TNBC treatment has not been totally elucidated. METHODS: Here, network pharmacology and molecular docking were used to explore the mechanism of Traditional Chinese medicine in the treatment of TNBC. Then, biological experiments were integrated to verify the results of network pharmacology. RESULTS: Network pharmacology showed that the candidate active ingredients mainly included quercetin, kaempferol, stigmasterol, and ß-sitosterol through the "XLLXF-active ingredients-targets" network. Vascular endothelial growth factor A (VEGFA) and matrix metalloproteinase (MMP) 2 were the potential therapeutic targets obtained through the protein-protein interaction (PPI) network. Molecular docking confirmed that quercetin, kaempferol, stigmasterol, and ß-sitosterol could stably combine with VEGFA and MMP2. Experimental verification showed that XLLXF could inhibit proliferation, colony ability, and vasculogenic mimicry (VM) formation and promote cell apoptosis in TNBC. Laser confocal microscopy found that XLLXF impaired F-actin cytoskeleton organization and inhibited epithelial mesenchymal transition. Animal experiments also found that XLLXF could inhibit tumor growth and VM formation in TNBC xenograft model. Western blot analysis and immunohistochemical staining showed that XLLXF inhibited the protein expression of VEGFA, MMP2, MMP9, Vimentin, VE-cadherin, and Twist1 and increased that of E-cadherin, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-3 in vitro and in vivo. CONCLUSIONS: Integrating the analysis of network pharmacology and experimental validation revealed that XLLXF could inhibit VM formation via downregulating the VEGF/MMPs signaling pathway.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Epimedium brevicornu Maxim. and Cullen corylifolium (L.) Medik. are part of a traditional Chinese medicine (TCM) drug pair (ECDP) widely used in the clinical treatment of breast cancer (BC). Both drugs have been proven to have anti-tumor effect. However, the active ingredients and molecular mechanism of ECDP remain to be explored. AIM OF THE STUDY: To explore the efficacy and potential mechanisms of actions of herb pair through network pharmacology and in vitro and in vivo experiments. MATERIALS AND METHODS: The active ingredients of ECDP were identified using high-performance liquid chromatography. The corresponding potential target genes for ECDP components and BC were extracted from established databases, and the protein-protein interaction network of shared genes was constructed using STRING database. The effective ingredients and targets of ECDP for BC were obtained through the TCMSP database and GeneCards database. The potential targets and pathways were selected through the protein interaction network and enrichment analysis. Proliferation and migration experiments in vitro and tumor growth in vivo were performed to evaluate the effects of Anhydroicaritin (AHI) on BC. RESULTS: AHI is the potential candidate active ingredient of ECDP through TCMSP. Molecular docking revealed that AHI has excellent binding ability with TP53, VEGFA, MMP2, and Met. In vitro experiment results showed that AHI inhibits the growth of MDA-MB-231, 4T1, MCF-7, and SK-BR-3 BC cells. The inhibitory effect of AHI on triple-negative BC cells is more obvious. With the increase of AHI concentration, the colony-forming, migration, and metastasis abilities of the MDA-MB-231 and 4T1 cells gradually decreases. In addition, Western blot and reverse transcription polymerase chain reaction analyses results indicated that AHI downregulates HIF-1α/VEGFA signaling in triple-negative BC cells. AHI inhibits tumor growth and lung metastasis while downregulating the expression of HIF-1α and VEGFA. CONCLUSION: AHI may play an anti-BC effect by inhibiting cancer cell proliferation, invasion, and metastasis. The results of this study may provide a theoretical basis for AHI research and the clinical application of ECDP in BC.
Assuntos
Neoplasias da Mama , Medicamentos de Ervas Chinesas , Benzopiranos , Neoplasias da Mama/tratamento farmacológico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em RedeRESUMO
Lung metastasis of Triple-negative breast cancer (TNBC) causes severe breath-related events and poor prognosis. Ruyiping (RYP), a traditional Chinese medicine prescription, is used to treat breast cancer lung metastasis in clinical practice. This study was to explore the anti-lung-metastatic activities and mechanism of RYP extract by regulating macrophage polarization. The results showed that RYP can inhibit the viability and induce the apoptosis of TNBC cells. In in vitro experiments, RYP significantly inhibited the invasion and migration ability of TNBC cells promoted by M2, the subtype of macrophage which increased TNBC metastasis related genes. In in vivo experiments, RYP reduced the TNBC progression and lung metastasis. M2/M1 ration in the lung and M2 in the tumor was reduced by RYP, as well as M2 master regulator Stat6. Therefore, RYP extract may exhibit anti-lung metastasis function by reducing M2 in both tumor and lung through reducing Stat6.
Assuntos
Polaridade Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
Background: Anthracycline-based chemotherapy is an effective treatment used for early-stage breast cancer patients. However, anthracycline use is limited due to its cardiotoxic effects. Recent studies have shown that Platycodon grandiflorum (PG) protects the heart from anthracycline-induced cardiotoxicity. However, no randomized, placebo-controlled clinical trial has been performed to investigate the clinical use of PG to prevent anthracycline-induced cardiotoxicity. This study aimed to evaluate the cardioprotective effects and safety of PG in early breast cancer patients receiving anthracycline-based chemotherapy. Methods: A total of 125 early breast cancer patients receiving anthracycline-based chemotherapy were enrolled and randomized into a PG group or placebo group in a 1:1 ratio. Results: Only 2 (3.1%) participants in the placebo group and 1 (1.6%) participant in the PG group experienced NYHA (New York Heart Association) class III or IV heart failure. There were no significant differences observed between the 2 groups. However, compared with the placebo group, patients in the PG group showed a lower incidence of subclinical heart failure (21.9% vs 8.2%, respectively, P = .033), as well as lower cardiac troponin T levels (48.4% vs 31.1%, respectively, P = .002). Importantly, there were no differences observed in the antitumor effects of anthracycline between the 2 groups (disease-free survival: hazards ratio = 1.09, 95% confidence interval = 0.45-2.62, P = .84; overall survival: hazards ratio = 1.46, 95% confidence interval = 0.33-6.43, P = .62). Conclusion: PG prevents anthracycline-induced acute and chronic cardiac injury in early-stage breast cancer patients without compromising the antitumor effects of chemotherapy.
Assuntos
Neoplasias da Mama , Platycodon , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Feminino , HumanosRESUMO
OBJECTIVE: To evaluate the effects of Celastrus Orbiculatus extracts (COE) on metastasis in hypoxia-induced hepatocellular carcinoma cells (HepG2) and to explore the underlying molecular mechanisms. METHODS: The effect of COE (160, 200 and 240 µ g/mL) on cell viability, scratch-wound, invasion and migration were studied by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-H-tetrazolium bromide (MTT), scratch-wound and transwell assays, respectively. CoCl2 was used to establish a hypoxia model in vitro. Effects of COE on the expressions of E-cadherin, vimentin and N-cadherin were investigated with Western blot and immunofluorescence analysis, respectively. RESULTS: COE inhibited proliferation and metastasis of hypoxia-induced hepatocellular carcinoma cells in a dose-dependent manner (P<0.01). Furthermore, the expression of epithelial-mesenchymal transition (EMT) related markers were also remarkably suppressed in a dose-dependent manner (P<0.01). In addition, the upstream signaling pathways, including the hypoxia-inducible factor 1 α (Hif-1 α) and Twist1 were suppressed by COE. Additionally, the Hif-1 α inhibitor 3-5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), potently suppressed cell invasion and migration as well as expression of EMT in hypoxia-induced HepG2 cells. Similarly, the combined treatment with COE and YC-1 showed a synergistic effect (P<0.01) compared with the treatment with COE or YC-1 alone in hypoxia-induced HepG2 cells. CONCLUSIONS: COE significantly inhibited the tumor metastasis and EMT by suppressing Hif-1 α/Twist1 signaling pathway in hypoxia-induced HepG2 cell. Thus, COE might have potential effect to inhibit the progression of HepG2 in the context of tumor hypoxia.
Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Celastrus/química , Regulação para Baixo , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Extratos Vegetais/uso terapêutico , Biomarcadores Tumorais/metabolismo , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cobalto , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Hep G2 , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Celastrus orbiculatus is a traditional medicinal plant used in the anti-inflammatory and analgesic treatment of various diseases. A previous study demonstrated that ethyl acetate extract of C. orbiculatus (COE) exhibited significant antitumor effects. However, studies concerning the effects and mechanism of COE in terms of suppressing the epithelial-mesenchymal transition (EMT) in human gastric adenocarcinoma cells have not been performed at present. The present study hypothesized that COE may inhibit EMT in gastric adenocarcinoma cells by regulating cell cytoskeleton rearrangement. The effect of COE on the viability of AGS cells was detected by MTT assay. An EMT model was induced by transforming growth factor-ß1. Cell cytoskeleton staining, laser scanning confocal microscopy and electronic microscopy were used to detect the changes in cell morphology and microstructure of gastric adenocarcinoma cells prior and subsequent to COE treatment. Invasion and migration assays were used to observe the effect of COE on the metastatic ability of AGS cells in vitro. The effect of COE on the expression of Cofilin 1 and EMT biomarkers, including Epithelial-cadherin, Neural-cadherin, Vimentin and matrix metalloproteinases, was examined by western blotting in AGS cells. The correlation between Cofilin 1 and EMT was investigated with immunofluorescence and cytoskeleton staining methods. The results demonstrated that COE may significantly inhibit the process of EMT in AGS cells, and that this was concentration-dependent. In addition, COE significantly downregulated the level of Cofilin 1 in a concentration-dependent manner. In conclusion, these results suggested that Cofilin 1 was directly involved in the process of EMT in AGS cells, and that it served an important function. COE may significantly inhibit EMT in AGS cells, potentially by inhibiting the activation of the Cofilin 1 signaling pathway. The present study may provide a basis for the development of novel anticancer drugs and the development of novel therapeutic strategies, targeting Cofilin 1 protein.
RESUMO
BACKGROUND: Gliomas are highly aggressive tumors of the nervous system, and current treatments fail to improve patient survival. To identify substances that can be used as treatments for gliomas, we examined the effect of Celastrus orbiculatus extract (COE) on the invasion and migration of human glioblastoma U87 and U251 cells in vitro. METHODS: The effects of COE on cell viability and adhesion were tested using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and cell adhesion assay, respectively. The effects of COE on cell migration and invasion were assessed by a wound-healing assay and transwell migration and invasion assays. The effects of COE on the expression of epithelial-mesenchymal transition (EMT)-related proteins and matrix metalloproteinases (MMPs) were evaluated using western blot and gelatin zymography, respectively. Finally, the effect of COE on actin assembly was observed using phalloidin-tetramethylrhodamine isothiocyanate labeling and confocal laser scanning microscopy. RESULTS: We found that COE inhibited the adhesion, migration, and invasion of U87 and U251 cells in a dose-dependent manner. COE reduced N-cadherin and vimentin expression, increased E-cadherin expression, and reduced MMP-2 and MMP-9 expression in U87 and U251 cells. Furthermore, COE inhibited actin assembly in U87 and U251 cells. CONCLUSIONS: COE attenuates EMT, MMP expression, and actin assembly in human glioblastoma cells, thereby inhibiting their adhesion, migration, and invasion in vitro.