Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(10): 4613-4621, 2022 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-36224146

RESUMO

To provide guidance for the safe use of organic fertilizers and improve soil quality and tea safety, it is necessary to conduct systematic analyses of the heavy metal content of organic fertilizers applied in the main tea producing areas of China. In this study, we analyzed the heavy metal contents in organic fertilizer samples collected from 2017 to 2019. The risks of collected organic fertilizers from different areas and sources were calculated. The results showed that the average concentrations of ω(As), ω(Hg), ω(Pb), ω(Cd), ω(Cr), ω(Cu), ω(Zn), and ω(Ni) in the collected organic fertilizers were 4.60, 0.22, 27.1, 0.78, 27.9, 58.3, 250.1, and 16.3 mg·kg-1, respectively. According to the assessment standard in NY/T 525- 2021, the over-limit rates of As, Hg, Pb, Cd, and Cr were 6.19%, 1.33%, 4.42%, 4.42%, and 1.33%, respectively. With respect to the area, the qualified rates were 100% in Shaanxi, Jiangsu, Anhui, Fujian, and Guangxi; 80%-90% in Shandong, Zhejiang, Hubei, Sichuan, Yunnan, and Guangdong; and only 54.5% in Jiangxi. The qualified rates of sources were 100% in rapeseed cake, soybean cake, and pig manure; 95.8% in sheep manure; 91.7% in cow manure; 90.7% in chicken manure; 87.2% in manure of other animals; 82.4% in the mixture of plant and animal sources; 65.2% in other plant sources; and 63.6% in other sources. According to the recommended application rate, the accumulation rate of heavy metals in soil with pig manure, cow manure, chicken manure, and sheep manure would be much higher than that with rapeseed cake and soybean cake. The average accumulation rate of organic fertilizer from animal sources was 7-30 times higher than that from plant sources. Therefore, it is recommended to use rapeseed cake or soybean cake fertilizer in tea plantation and to increase the supervision of heavy metal accumulation in soil and tea in those high-risk areas.


Assuntos
Brassica napus , Brassica rapa , Fabaceae , Mercúrio , Metais Pesados , Poluentes do Solo , Animais , Cádmio/análise , Galinhas , China , Monitoramento Ambiental/métodos , Fertilizantes/análise , Chumbo/análise , Esterco/análise , Mercúrio/análise , Metais Pesados/análise , Ovinos , Solo , Poluentes do Solo/análise , Glycine max , Suínos , Chá
2.
Plant Commun ; 2(3): 100182, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-34027395

RESUMO

Unlike most crops, in which soil acidity severely limits productivity, tea (Camellia sinensis) actually prefers acid soils (pH 4.0-5.5). Specifically, tea is very tolerant of acidity-promoted aluminum (Al) toxicity, a major factor that limits the yield of most other crops, and it even requires Al for optimum growth. Understanding tea Al tolerance and Al-stimulatory mechanisms could therefore be fundamental for the future development of crops adapted to acid soils. Here, we summarize the Al-tolerance mechanisms of tea plants, propose possible mechanistic explanations for the stimulation of tea growth by Al based on recent research, and put forward ideas for future crop breeding for acid soils.


Assuntos
Alumínio/metabolismo , Camellia sinensis/fisiologia , Melhoramento Vegetal , Solo/química , Camellia sinensis/genética
3.
J Zhejiang Univ Sci B ; 9(3): 265-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18357630

RESUMO

It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field investigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots>stems approximately main roots>old leaves>young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the above-ground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosynthetic rate, transpiration rate and biomass production of tea plants.


Assuntos
Arsênio/metabolismo , Cádmio/metabolismo , Camellia sinensis/metabolismo , Chá/metabolismo , Biomassa , Clorofila/metabolismo , Fotoquímica , Brotos de Planta/metabolismo
4.
Chemosphere ; 66(1): 84-90, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16844190

RESUMO

Tea is a widely consumed beverage. However, recent studies revealed that there were an increasing number of cases of tea products exceeding the former maximum permissible concentration (MPC) in China for Pb (2 mg kg(-1)). Tea Pb contamination is an issue affecting trade and consumer confidence. Root uptake of Pb could contribute significantly to Pb accumulation in tea leaves due to the strong acidity of many tea garden soils. We conducted pot and field experiments to evaluate the effect of liming on Pb uptake by tea plants on two highly acidic soils (pH3.6). Additions of CaCO(3) significantly increased soil pH by up to 1 unit and decreased soil extractable Pb by up to 32%. Liming resulted in a decrease in the proportion of Pb in the exchangeable and carbonate-bound fractions, with a concurrent increase in the fractions bound to Fe/Mn oxides and residues. Liming significantly decreased Pb concentrations of fine roots, stems and new shoots of tea plants in the pot experiment. In the field experiments, the effect of liming was not significant during the first year following CaCO(3) application, but became significant during the second and third years and Pb concentration in the new shoots was decreased by approximately 20-50%, indicating that liming of acidic tea garden soils is an effective way to reduce Pb contamination of tea. The study also reveals a distinct seasonal variation, with Pb concentration in the new shoots following the order of spring>autumn>summer.


Assuntos
Compostos de Cálcio/farmacologia , Camellia sinensis/efeitos dos fármacos , Chumbo/metabolismo , Óxidos/farmacologia , Estações do Ano , Carbonato de Cálcio/farmacologia , Camellia sinensis/metabolismo , Chumbo/análise , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Poluentes do Solo/farmacologia
5.
Environ Pollut ; 139(1): 125-32, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15998560

RESUMO

We investigated the scale and causes of Pb contamination in Chinese tea. Lead concentrations in 1,225 tea samples collected nationally between 1999 and 2001 varied from <0.2 to 97.9 mg kg(-1) dry weight (DW), with 32% of the samples exceeding the national maximum permissible concentration (MPC) of 2.0 mg kg(-1) DW and a significant difference between tea types. There was an increasing trend in tea Pb concentration from 1989 to 2000. Proximity to highway and surface dust contamination were found to cause elevated Pb concentrations in tea leaves. Furthermore, Pb concentration in tea leaves correlated significantly and positively with soil extractable Pb, and negatively with soil pH, suggesting that root uptake of Pb from soils also contributed to Pb accumulation in tea. Potential contributions to human Pb intake from drinking tea were small at the median or national MPC Pb values, but considerable at the highest concentration found in the study.


Assuntos
Camellia sinensis/química , Contaminação de Alimentos/análise , Chumbo/análise , Chá/química , Poluentes Atmosféricos/análise , China , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Chumbo/administração & dosagem , Chumbo/toxicidade , Folhas de Planta/química , Raízes de Plantas/química , Solo/análise , Poluentes do Solo/análise , Fatores de Tempo , Emissões de Veículos/efeitos adversos , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA