RESUMO
Exposure to aristolochic acid I (AAI) is associated with aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial cancer. Individual differences in xenobiotic-metabolizing enzyme activities are likely to be a reason for interindividual susceptibility to AA-induced disease. We evaluated the reductive activation and oxidative detoxication of AAI by cytochrome P450 (P450) 1A1 and 1A2 using the Cyp1a1(-/-) and Cyp1a2(-/-) single-knockout and Cyp1a1/1a2(-/-) double-knockout mouse lines. Incubations with hepatic microsomes were also carried out in vitro. P450 1A1 and 1A2 were found to (i) activate AAI to form DNA adducts and (ii) detoxicate it to 8-hydroxyaristolochic acid I (AAIa). AAI-DNA adduct formation was significantly higher in all tissues of Cyp1a1/1a2(-/-) than Cyp1a(+/+) wild-type (WT) mice. AAI-DNA adduct levels were elevated only in selected tissues from Cyp1a1(-/-) versus Cyp1a2(-/-) mice, compared with those in WT mice. In hepatic microsomes, those from WT as well as Cyp1a1(-/-) and Cyp1a2(-/-) mice were able to detoxicate AAI to AAIa, whereas Cyp1a1/1a2(-/-) microsomes were less effective in catalyzing this reaction, confirming that both mouse P450 1A1 and 1A2 are both involved in AAI detoxication. Under hypoxic conditions, mouse P450 1A1 and 1A2 were capable of reducing AAI to form DNA adducts in hepatic microsomes; the major roles of P450 1A1 and 1A2 in AAI-DNA adduct formation were further confirmed using selective inhibitors. Our results suggest that, in addition to P450 1A1 and 1A2 expression levels in liver, in vivo oxygen concentration in specific tissues might affect the balance between AAI nitroreduction and demethylation, which in turn would influence tissue-specific toxicity or carcinogenicity.
Assuntos
Ácidos Aristolóquicos/farmacocinética , Carcinógenos/farmacocinética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Medicamentos de Ervas Chinesas/farmacocinética , Animais , Ácidos Aristolóquicos/urina , Nefropatia dos Bálcãs/enzimologia , Biotransformação , Citocromo P-450 CYP1A1/deficiência , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/deficiência , Citocromo P-450 CYP1A2/genética , Adutos de DNA , Suscetibilidade a Doenças , Feminino , Rim/enzimologia , Fígado/enzimologia , Pulmão/enzimologia , Camundongos , Camundongos Knockout , Microssomos/enzimologia , Neoplasias Urológicas/enzimologiaRESUMO
OBJECTIVE: To investigate the effects of N-methyl-D-aspartate (NMDA) receptor antagonists on restraint-induced release of prolactin (PRL) in male Wistar rats of different ages. DESIGN: Rats were implanted with a brain ventricular for icv injection, and with a jugular vein cannula for iv injection. Competitive NMDA receptor antagonist AP-5 and noncompetitive NMDA receptor blocker MK-801 was injected via brain cannula or vein cannula and was restrained for 3 hours. The blood sample was collected through vein cannula during the restraint. The plasma concentration of prolactin was measured by RIA. RESULTS: The restraint-induced PRL release in the adult rat (12-weeks) was significantly suppressed by MK-801 (50 microg/rat, icv; or 5 mg/kg, iv) and was partially inhibited by pretreatment of AP-5 (50, 100 microg/rat, icv), but was not changed by systemic administration of AP-5 (10 mg/kg, iv). MK-801 (5 mg/kg, iv) prevented the restraint-induced PRL release in the peripuberal rat (45-days) and in the middle-aged rat (16-months). CONCLUSION: Central NMDA receptors mediate restraint-induced PRL release in the male rat.