Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 110: 154611, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580819

RESUMO

BACKGROUND: Spirulina (Arthrospira maxima) hot water extracts such as calcium spirulan (Ca-SP) have demonstrated antiviral effects against herpes simplex virus (HSV), human immunodeficiency virus-1 (HIV-1), and influenza virus infections. There is no prior evidence suggesting the anti-viral activity of the spirulina hot water extract against respiratory syncytial virus (RSV). PURPOSE: There are currently no effective antivirals available to treat RSV infection. Therefore, the development of safe and novel anti-RSV drugs is urgent and necessary. The aim of this work was to demonstrate the anti-RSV activity of spirulina hot water extracts and determine the potential mechanism of action. METHODS: Cytotoxicity and anti-RSV activity of spirulina hot water extracts were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and neutralization assays, respectively. Potential mechanisms and components were assessed using time of addition, attachment, internalization, pull-down assays, and composition analysis. RESULTS: The polysaccharide-enriched high-molecular weight fraction (>100 kDa, SHD1) had a high total sugar content, with rhamnose accounting for approximately 60 mol% of total monosaccharides. The main glycosyl linkages included 3-, 4-, and 2,3-rhamnopyranosyl linkages. All spirulina hot water extracts showed no toxicity toward human epithelial type 2 (HEp-2) cells but demonstrated anti-RSV activity. The SHD1 had a half maximal effective concentration (EC50) of 0.0915 mg/ml and a selective index (SI) of >261.5 against RSV. SHD1 significantly reduced viral yield in a dose-dependent manner during the RSV attachment stage. SHD1 disrupted RSV internalization and inhibited RSV attachment (G) protein binding to heparan sulfate receptors on the host cell surface, thus preventing RSV attachment and entry. CONCLUSION: SHD1 serves as an effective candidate for novel drug development against RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Spirulina , Humanos , Vírus Sinciciais Respiratórios , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/metabolismo
2.
Phytomedicine ; 64: 152904, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31454654

RESUMO

BACKGROUND: Millions of people are infected by the influenza virus worldwide every year. Current selections of anti-influenza agents are limited and their effectiveness and drug resistance are still of concern. PURPOSE: Investigation on in vitro and in vivo effect of aloin from Aloe vera leaves against influenza virus infection. METHODS: In vitro antiviral property of aloin was measured by plaque reduction assay in which MDCK cells were infected with oseltamivir-sensitive A(H1N1)pdm09, oseltamivir-resistant A(H1N1)pdm09, H1N1 or H3N2 influenza A or with influenza B viruses in the presence of aloin. In vivo activity was tested in H1N1 influenza virus infected mice. Aloin-mediated inhibition of influenza neuraminidase activity was tested by MUNANA assay. Aloin treatment-mediated modulation of anti-influenza immunity was tested by the study of hemagglutinin-specific T cells in vivo. RESULTS: Aloin significantly reduced in vitro infection by all the tested strains of influenza viruses, including oseltamivir-resistant A(H1N1)pdm09 influenza viruses, with an average IC50 value 91.83 ± 18.97 µM. In H1N1 influenza virus infected mice, aloin treatment (intraperitoneal, once daily for 5 days) reduced virus load in the lungs and attenuated body weight loss and mortality. Adjuvant aloin treatment also improved the outcome with delayed oseltamivir treatment. Aloin inhibited viral neuraminidase and impeded neuraminidase-mediated TGF-ß activation. Viral neuraminidase mediated immune suppression with TGF-ß was constrained and influenza hemagglutinin-specific T cell immunity was increased. There was more infiltration of hemagglutinin-specific CD4+ and CD8+ T cells in the lungs and their production of effector cytokines IFN-γ and TNF-α was boosted. CONCLUSION: Aloin from Aloe vera leaves is a potent anti-influenza compound that inhibits viral neuraminidase activity, even of the oseltamivir-resistant influenza virus. With suppression of this virus machinery, aloin boosts host immunity with augmented hemagglutinin-specific T cell response to the infection. In addition, in the context of compromised benefit with delayed oseltamivir treatment, adjuvant aloin treatment ameliorates the disease and improves survival. Taken together, aloin has the potential to be further evaluated for clinical applications in human influenza.


Assuntos
Aloe/química , Antivirais/farmacologia , Emodina/análogos & derivados , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Neuraminidase/antagonistas & inibidores , Animais , Linhagem Celular , Farmacorresistência Viral , Emodina/farmacologia , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oseltamivir/farmacologia , Folhas de Planta/química , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Proteínas Virais/antagonistas & inibidores
3.
J Antimicrob Chemother ; 71(7): 1922-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098012

RESUMO

OBJECTIVES: Enterovirus 71 (EV-A71) is an important pathogen that can cause severe neurological symptoms and even death. Our aim was to identify potent anti-EV-A71 compounds and study their underlying mechanisms and in vivo activity. METHODS: We identified a potent imidazolidinone derivative (abbreviated to PR66) as an inhibitor of EV-A71 infection from the screening of compounds and subsequent structure-based modification. Time-course treatments and resistant virus selection of PR66 were employed to study the mode of mechanism of PR66. In vivo activity of PR66 was tested in the ICR strain of new-born mice challenged with EV-A71/4643/MP4. RESULTS: PR66 could impede the uncoating process during viral infection via interaction with capsid protein VP1, as shown by a resistant virus selection assay. Using site-directed mutagenesis, we confirmed that a change from valine to phenylalanine in the 179th amino acid residue of the cDNA-derived resistant virus resulted in resistance to PR66. PR66 increased the virion stability of WT viruses, but not the PR66-resistant mutant, in a particle stability thermal release assay. We further showed that PR66 had excellent anti-EV-A71 activity in an in vivo mouse model of disease, with a dose-dependent increase in survival rate and in protection against virus-induced hind-limb paralysis following oral or intraperitoneal administration. This was associated with reductions of viral titres in brain and muscle tissues. CONCLUSIONS: We demonstrated here for the first time that an imidazolidinone derivative (PR66) could protect against EV-A71-induced neurological symptoms in vivo by suppressing EV-A71 replication. This involved binding to and restricting viral uncoating.


Assuntos
Antivirais/metabolismo , Antivirais/farmacologia , Capsídeo/efeitos dos fármacos , Enterovirus Humano A/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/virologia , Humanos , Concentração Inibidora 50 , Camundongos Endogâmicos ICR , Análise de Sobrevida
4.
J Antimicrob Chemother ; 65(1): 63-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892833

RESUMO

OBJECTIVES: The emergence of oseltamivir-resistant viruses raised the global threat with regard to influenza virus infection. To develop alternative antiviral agents against influenza virus infection is significant and urgent. METHODS: A neutralization test was applied as a screening assay and a plaque reduction assay was used for confirmation. Expression plasmids for viral ribonucleoproteins (RNPs) and a plasmid that allowed expression of a pseudoviral reporter RNA were transfected into cells to investigate the effects of a novel antiviral compound on viral RNA synthesis. RESULTS: BPR2-D2 was identified as a novel inhibitor against influenza virus from a hit obtained from high throughput screening of 20 000 or more compounds. BPR2-D2 exhibited an excellent antiviral efficacy for the oseltamivir-resistant virus (EC(50) ranging from 0.021 to 0.040 microM). No resistant virus was produced throughout 20 passages in the presence of BPR2-D2, whereas oseltamivir-resistant virus was generated at passage 8 using the same experimental system. A molecular target other than neuraminidase (NA) was found because BPR2-D2 inhibited the synthesis of viral RNA that was driven by influenza viral RNP in a transfection assay. BPR2-D2 also exhibited a broad antiviral spectrum against various strains of influenza A and influenza B viruses. CONCLUSIONS: BPR2-D2 was identified as a novel inhibitor of influenza virus. It may target viral RNPs that are responsible for viral RNA synthesis. Targeting different molecules compared with NA allows BPR2-D2 to inhibit oseltamivir-resistant viruses.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral , Orthomyxoviridae/efeitos dos fármacos , Oseltamivir/farmacologia , Ribonucleoproteínas/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Testes de Neutralização , Orthomyxoviridae/genética , Ribonucleoproteínas/genética , Transfecção , Ensaio de Placa Viral , Proteínas Virais/genética
5.
Acta Pharmacol Sin ; 29(11): 1327-33, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18954527

RESUMO

AIM: Studies of eukaryotes have yielded 2 translation initiation mechanisms: a classical cap-dependent mechanism and a cap-independent mechanism proceeding through the internal ribosomal entry site (IRES). We hypothesized that it might be possible to identify compounds that may distinguish between cap-dependent translation and cap-independent IRES-mediated translation. METHODS: To facilitate compound screening, we developed bicistronic reporter constructs containing a beta-galactosidase gene (beta-gal) and a secreted human placental alkaline phosphatase (SEAP) reporter gene. Following transcription, the beta-gal gene is translated by a cap-dependent mechanism, while SEAP expression is controlled by the IRES derived from either enterovirus 71 (EV-71) or encephalomyocarditis virus (EMCV). This assay could potentially identify compounds that inhibit SEAP expression (cap-independent) without affecting beta-gal activity (cap-dependent). RESULTS: Using a bicistronic plasmid-based transient transfection assay in the COS-1 cells, we identified amantadine, a compound that inhibited the IRES of EV71- and EMCV-mediated cap-independent translation but did not interfere with cap-dependent translation when the dose of amantadine was lower than 0.25 mg/mL. CONCLUSION: These results imply that amantadine may distinguish between cap-dependent translation and cap-independent IRES-mediated translation and can be used to regulate gene expression at a translational level.


Assuntos
Amantadina/farmacologia , Antivirais/farmacologia , Complexo Proteico Nuclear de Ligação ao Cap/efeitos dos fármacos , Ribossomos/efeitos dos fármacos , Animais , Células COS , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Vírus da Encefalomiocardite/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Interferon-alfa/farmacologia , beta-Galactosidase/metabolismo
6.
Bioorg Med Chem Lett ; 15(19): 4206-11, 2005 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-16054357

RESUMO

The new pyridyl imidazolidinone derivative, 1-[5-(4'-chlorobiphenyl-4-yloxy)-3-methylpentyl]-3-pyridin-4-yl-imidazolidin-2-one (+/-)-1a, was synthesized and found to have an excellent antiviral activity against EV71 (IC50 = 0.009 microM). Therefore, both the enantiomers, (S)-(+)-1a and (R)-(-)-1a, have been prepared starting from readily available monomethyl (R)-3-methylglutarate (7) as a useful chiral building block and their antiviral activity was evaluated in a plaque reduction assay. Interestingly, we observed that the enantiomer (S)-(+)-1a was 10-fold more active against enterovirus71 (EV71) (IC50 = 0.003 microM) than the corresponding enantiomer (R)-(-)-1a (IC50 = 0.033 microM). Similar results were found against all five strains (1743, 2086, 2231, 4643, and BrCr) of EV71 tested. This demonstrated that the absolute configuration of the chiral carbon atom at the 3-position of the alkyl linker considerably influenced the anti-EV71 activity of these pyridyl imidazolidinones.


Assuntos
Antivirais/síntese química , Imidazolidinas/síntese química , Picornaviridae/efeitos dos fármacos , Antivirais/farmacologia , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazolidinas/farmacologia , Concentração Inibidora 50 , Cetonas , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA