Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ginseng Res ; 48(2): 149-162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465223

RESUMO

Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.

2.
Sci Rep ; 13(1): 22325, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102332

RESUMO

The Araliaceae contain many valuable species in medicinal and industrial aspects. We performed intensive phylogenomics using the plastid genome (plastome) and 45S nuclear ribosomal DNA sequences. A total of 66 plastome sequences were used, 13 of which were newly assembled in this study, 12 from new sequences, and one from existing data. While Araliaceae plastomes showed conserved genome structure, phylogenetic reconstructions based on four different plastome datasets revealed phylogenetic discordance within the Asian Palmate group. The divergence time estimation revealed that splits in two Araliaceae subfamilies and the clades exhibiting phylogenetic discordances in the Asian Palmate group occurred at two climatic optima, suggesting that global warming events triggered species divergence, particularly the rapid diversification of the Asian Palmate group during the Middle Miocene. Nucleotide substitution analyses indicated that the Hydrocotyloideae plastomes have undergone accelerated AT-biased mutations (C-to-T transitions) compared with the Aralioideae plastomes, and the acceleration may occur in their mitochondrial and nuclear genomes as well. This implies that members of the genus Hydrocotyle, the only aquatic plants in the Araliaceae, have experienced a distinct evolutionary history from the other species. We also discussed the intercontinental disjunction in the genus Panax and proposed a hypothesis to complement the previously proposed hypothesis. Our results provide the evolutionary trajectory of Araliaceae and advance our current understanding of the evolution of Araliaceae species.


Assuntos
Araliaceae , Centella , Genomas de Plastídeos , Panax , Filogenia , Mutação , Panax/genética , Evolução Molecular
3.
BMC Plant Biol ; 22(1): 4, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979940

RESUMO

BACKGROUND: Cynanchum wilfordii (Cw) and Cynanchum auriculatum (Ca) have long been used in traditional medicine and as functional food in Korea and China, respectively. They have diverse medicinal functions, and many studies have been conducted, including pharmaceutical efficiency and metabolites. Especially, Cw is regarded as the most famous medicinal herb in Korea due to its menopausal symptoms relieving effect. Despite the high demand for Cw in the market, both species are cultivated using wild resources with rare genomic information. RESULTS: We collected 160 Cw germplasm from local areas of Korea and analyzed their morphological diversity. Five Cw and one Ca of them, which were morphologically diverse, were sequenced, and nuclear ribosomal DNA (nrDNA) and complete plastid genome (plastome) sequences were assembled and annotated. We investigated the genomic characteristics of Cw as well as the genetic diversity of plastomes and nrDNA of Cw and Ca. The Cw haploid nuclear genome was approximately 178 Mbp. Karyotyping revealed the juxtaposition of 45S and 5S nrDNA on one of 11 chromosomes. Plastome sequences revealed 1226 interspecies polymorphisms and 11 Cw intraspecies polymorphisms. The 160 Cw accessions were grouped into 21 haplotypes based on seven plastome markers and into 108 haplotypes based on seven nuclear markers. Nuclear genotypes did not coincide with plastome haplotypes that reflect the frequent natural outcrossing events. CONCLUSIONS: Cw germplasm had a huge morphological diversity, and their wide range of genetic diversity was revealed through the investigation with 14 molecular markers. The morphological and genomic diversity, chromosome structure, and genome size provide fundamental genomic information for breeding of undomesticated Cw plants.


Assuntos
Cynanchum/genética , Variação Genética , Genoma de Planta , República da Coreia
4.
Genes Genomics ; 43(3): 209-215, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33609223

RESUMO

BACKGROUND: Panax ginseng is one of the most valuable medicinal plants in Korea. However, deciphering its full genome sequence information for crop improvement has been hampered due to its complex genomic, genetic, and growth characteristics. Many efforts have been made in the past decade to overcome these limitations and understand the genome structure and the evolutionary history of P. ginseng. METHODS: This review aims to discuss the current status of genomic studies on P. ginseng and related species, and the experimental clues suggesting phylogenetic classification and evolutionary history of the genus Panax. CONCLUSION: The development of sequencing technologies made genome sequencing of the large P. ginseng genome possible, providing fundamental information to deciphering the evolutionary history of P. ginseng and related species. P. ginseng went through two rounds of whole genome duplication events after diverging from the closest family Apiaceae, which was unveiled from complete whole genome sequences. Further in-depth comparative genome analysis with other related species and genera will uncover the evolutionary history as well as important morphological and ecological characteristics of Panax species.


Assuntos
Evolução Molecular , Genoma de Planta , Panax/genética , Análise Citogenética , Especiação Genética , Tamanho do Genoma , Genômica , Panax/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA