Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Biochem ; 24(6): 1096-104, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23318138

RESUMO

Abnormal regulation of Ca(2+) mediates tumorigenesis and Ca(2+) channels are reportedly deregulated in cancers, indicating that regulating Ca(2+) signaling in cancer cells is considered as a promising strategy to treat cancer. However, little is known regarding the mechanism by which Ca(2+) affects cancer cell death. Here, we show that 20-O-ß-d-glucopyranosyl-20(S)-protopanaxadiol (20-GPPD), a metabolite of ginseng saponin, causes apoptosis of colon cancer cells through the induction of cytoplasmic Ca(2+). 20-GPPD decreased cell viability, increased annexin V-positive early apoptosis and induced sub-G1 accumulation and nuclear condensation of CT-26 murine colon cancer cells. Although 20-GPPD-induced activation of AMP-activated protein kinase (AMPK) played a key role in the apoptotic death of CT-26 cells, LKB1, a well-known upstream kinase of AMPK, was not involved in this activation. To identify the upstream target of 20-GPPD for activating AMPK, we examined the effect of Ca(2+) on apoptosis of CT-26 cells. A calcium chelator recovered 20-GPPD-induced AMPK phosphorylation and CT-26 cell death. Confocal microscopy showed that 20-GPPD increased Ca(2+) entry into CT-26 cells, whereas a transient receptor potential canonical (TRPC) blocker suppressed Ca(2+) entry. When cells were treated with a TRPC blocker plus an endoplasmic reticulum (ER) calcium blocker, 20-GPPD-induced calcium influx was completely inhibited, suggesting that the ER calcium store, as well as TRPC, was involved. In vivo mouse CT-26 allografts showed that 20-GPPD significantly suppressed tumor growth, volume and weight in a dose-dependent manner. Collectively, 20-GPPD exerts potent anticarcinogenic effects on colon carcinogenesis by increasing Ca(2+) influx, mainly through TRPC channels, and by targeting AMPK.


Assuntos
Antineoplásicos/farmacologia , Cálcio/metabolismo , Neoplasias do Colo/tratamento farmacológico , Ginsenosídeos/farmacologia , Panax/química , Canais de Cátion TRPC/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Morte Celular , Sobrevivência Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Transdução de Sinais , Canais de Cátion TRPC/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA